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Implementation of a Referent Tracking System 

 
ABSTRACT 
 
Traditional database resources and Semantic Web technology face problems when there 

is a need to keep track of individuals in reality as these individuals undergo changes of 

various sorts. We describe an application which implements the Referent Tracking 

paradigm in which each real world entity has its own unique ID. The application is 

designed to be able to store relationships between tracked instances and also to be 

extendable to very high orders of magnitude (in principle to accept numbers of entries in 

the billions). Our approach is based on ontologies grounded in realism, but it can be 

extended also to information that is captured using the terminologies or concept-based 

ontologies used in traditional knowledge representation systems. The repository uses 

RDF as representation format, and it can thus be queried with query languages such as 

SPARQL, SeRQL and RQL, thereby providing support for reasoning over multiple 

ontologies.  

 
Keyword: ontology; referent tracking; unqualified realism; Semantic Web; RDF; 

Electronic Health Record; semantic interoperability 

 
INTRODUCTION 

Electronic Health Record (EHR) systems are software systems that manage 

patient information that typically arises within a single health care institution. Such 

systems exist in various flavors and can be built up out of several different types of 

components and rely on different types of standards such as HL7 (Health Level Seven 

Inc., 2007) or openEHR (Blobel, 2006). One particular component of a modern EHR 

deals with the access to terminologies such as ICD-9-CM (U.S. Department of Health & 

Human Services, 2006) or SNOMED-CT (SNOMED International, 2007), to coding and 

classification systems, and, more recently, also to ontologies such as the Foundational 

Model of Anatomy (FMA™ University of Washington, 2006). The purpose of using such 

systems is to avoid the ambiguities and interpretation problems that often arise when 



health professionals use local terminologies (or no terminologies at all) to enter 

statements in an EHR (Rosenbloom, Miller, Johnson, Elkin, & Brown, 2006). 

Unfortunately, this goal has thus far been only partly achieved. Using terminological 

systems of the sorts referred to above, in which the terms are given an intended and (so it 

is claimed) unique meaning, may indeed, if the system is used properly, reduce but not 

eliminate the risk of misinterpretation by humans. And, certainly, existing EHRs do not 

contain enough information of the right sort to enable correct interpretation by software 

agents. As an example, imagine that John consults a physician for a fracture in his left 

forearm at time t1 and that the fact of John having such a fracture at that time is 

registered in John’s record by putting the SNOMED-CT code 91419009 in the diagnosis 

field of the chart describing that particular visit (which took place at a certain place, with 

a particular physician, on a precise date, and so forth, all data which are registered in the 

context of that fracture). If John, at time t2, suffers from another fracture in his left 

forearm and the same procedure is used for registering this new fact, then, there is no 

obvious way to know whether the very same fracture is referred to, or a second one. This 

is because codes from terminological systems or ontologies do not identify uniquely the 

entities to which they are assigned in the context of clinical record keeping. They rather 

describe what generic category the entities to which they are assigned belong to. Referent 

Tracking (RT) is a paradigm that was introduced in 2005 in the field of EHR systems and 

that is intended to avoid such ambiguities through the mechanism of assigning globally 

unique IDs (called IUIs for ‘Instance Unique Identifiers’) to the entities on the side of the 

patients that clinicians refer to when writing statements in an EHR (Ceusters & Smith, 

2005). These IUIs are thus explicit references to the real world entities (called particulars 

in the tradition of philosophical ontology) on the side of patients, including their body 

parts, diseases, therapies, and so forth. 

Secondly, many efforts have been and are being made in developing ontologies 

and structured vocabularies in different domains to make data understandable by 

machines. Here interoperability is an indispensable requisite as EHR data are 

characteristically derived from different software systems. In this context various 

representation languages have been developed for purposes of ontology development, an 

example being the W3C recommended Ontology Web Language (OWL) (M. K. Smith, 



Welty, & McGuinness, 2004). In addition, there are tools such as Protégé (Gennari et al., 

2003), SWOOP (Kalyanpur, Parsia, Sirin, Grau, & Hendler, 2006) and OBO-Edit (OBO-

Edit Working Group, 2006) which have been used in building ontologies such as the 

FMA and the Gene Ontology (The Gene Ontology Consortium, 2007). Reasoning with 

such ontologies can be done with tools such as Pellet (Sirin, Parsia, Grau, Kalyanpur, & 

Katz., 2006), Racer (Haarslev & Möller, 2001) and FaCT (Tsarkov & Horrocks, 2006). 

Some of these representation tools allow only class-level representations, while most 

current reasoners do not support reasoning over instances at all nor in ways that mirror 

the relationships between the instances in reality. And finally, existing ontology tools 

typically fail when they are loaded with large amounts of instance data.  

An additional problem exists at the level of the integration of terminologies and 

ontologies in EHR applications because the latter can refer to terms from different 

systems each of them represented in distinct language formats. 

We describe a software system which implements the Referent Tracking 

paradigm. This Referent Tracking System (RTS) is able to contain large amounts of data 

pertaining to real-world entities and their relationships in a way that is consistent with the 

view endorsed by philosophical realism. The RTS is designed to act as a backbone for 

other applications such as EHRs. It uses RDF as a representation language, can be 

queried by means of semantic query languages thereby providing support for reasoning 

over multiple ontologies. The software is developed in Java and is available as a 

standalone server application accessible through web services as well as a library which 

allows client applications to embed the RTS. The server is intended to be hosted by a 

health institute which serves as the hub for other health institutes (clients). It also 

contains a visualization component for the graphs stored in the Referent Tracking 

database. 

 
REFERENT TRACKING 

Main principles 
The purpose of an RTS is, as its name suggests, to keep track of referents which 

are entities that exist in reality, i.e. in the spatiotemporal world that surrounds us. In the 

context of an EHR, the referents are in the first place particulars such as John, John’s 



Left forearm, the specific fracture in John’s Left forearm, and so forth. These particulars 

are instances of universals such as person, Left forearm and fracture, which are 

represented in ontologies. The term universal is a philosophical term used to denote what 

is general in reality. Universals are represented in ontologies by means of classes. 

Referent tracking requires explicit reference to be made by means of IUIs to the 

particulars about which users want to provide information. Thus the information that is 

currently captured in the EHR by means of sentences such as: “this patient has a left 

forearm fracture”, would need to be conveyed by means of descriptions such as “#IUI-4 

is located in #IUI-1”, together with associated information to the effect that “IUI-1” 

refers to the patient under scrutiny, and “IUI-4” to a particular fracture in patient #IUI-1 

(and not to some similar left forearm fracture from which he suffered earlier). The RTS 

must correspondingly contain information relating particulars to classes, such as “IUI-4 

instance of fracture” (where ‘fracture’ might be replaced by a unique identifier pointing 

to the class fracture in an ontology). Following the terminology defined in (B. Smith, 

Kusnierczyk, Schober, & Ceusters, 2006), a configuration of particulars and or universals 

is called a portion of reality. 

Of course, EHR systems that endorse the referent tracking paradigm should have 

mechanisms to capture the information that describes portions of reality in an easy and 

intuitive way, including mechanisms to translate generic statements into the intended 

concrete form, a form which may itself be operative primarily behind the scenes, so that 

the IUIs themselves remain invisible to the human user. This sort of technology is not 

addressed in this document. 

In (Ceusters & Smith, 2006) the conditions for assigning an IUI to a particular are 

described, as well as the templates according to which some portions of reality are to be 

represented in an RTS. An additional template for dealing with what in healthcare is 

known as “negative clinical findings”, is introduced in (Ceusters, Elkin, & Smith, 2006). 

Finally, at this time, also a template for registering names by which a particular is 

referred to in reality has been proposed (e.g. “John” as first name for that particular 

John), but this is something that will be changed in the future. The current set of 

templates is shown in Table 1. The templates are to be interpreted as an abstract syntax; it 



is left to the developers of an RTS to implement the specifications in the most optimal 

way given the constraints of the environment in which the system has to operate. 

Table 1: Abstract syntax and semantics of information templates in a referent tracking 
system 

Template Name Abstract Syntax RDFS class 
Description 
A-template Ai = < IUIp, IUIa, tap ParticularRepresentation > 
Captures the assignment of an IUIp to a particular at time tap by the particular referred to by author IUIa
PtoP – template 

. 
Ri = <IUIa, ta, r, o, P, tr PtoP > 

The particular referred to by author IUIa asserts at time ta that the relationship r from ontology o obtains between 
the particulars referred to in the set of IUIs P at time tr
PtoU-template 

. 
Ui = <IUIa, ta, inst, o, IUIp, u, tr PtoU  > 

The particular referred to by author IUIa asserts at time ta that the particular referred to by IUIp instantiate inst 
relation from ontology o with the universal u at time tr
PtoCo-template 

. 
Coi = <IUIa, ta, cbs, IUIp, co, tr PtoCo > 

The particular referred to by author IUIa asserts at time ta that the  particular referred to by IUIp is annotated by 
concept code co from terminology system cbs at time tr. 
PtoU— Utemplate −

i = <IUIa, ta, r, o, IUIp, u, tr PtoLackU > 
The particular referred to by author IUIa asserts at time ta that the relation r of ontology o does not obtain at time tr 
between the particular referred to by IUIp and any of the instances of the class u at time t
PtoN-template 

r 
Ni=< IUIa, ta, ntj, ni, IUIp, tr PtoN  > 

The particular referred to by author IUIa asserts at time ta that ni is the name of the nametype ntj assigned to the 
particular referred to by IUIp at tr
Meta-template 

. 
Di  = <IUId, Xi, td  > 

Publication of a description of a portion of reality in the RTS where IUId is the IUI of the entity registering Xi in 
the system, Xi is the information-unit in question (in the form of any other template above), and td

 

 is a reference to 
the time the registration was carried out. 

Requirements 
Although an RTS can be used independently in a single setting, for instance 

within a single general practitioner’s surgery or within the context of a hospital, the 

paradigm’s real benefits will primarily emerge when it is used in a distributed, 

collaborative environment, for instance if an RTS is used as a central server to which 

many health institutes are connected. One and the same patient is often cared for by a 

variety of healthcare providers, many of them working in different settings, and each of 

these settings may use its own separate information system. These systems contain 

different data, but these data often provide information about the same particulars. Under 

the current state of affairs, it is very hard, if not impossible, to query these data in such a 

way that, for a given particular, all information available can be retrieved. With the right 

sort of distributed RTS, such retrieval becomes in very many cases a trivial matter. 

Therefore, an RTS should be in line with the following design principles: 



• be able to run as a backbone for any EHR system whereby both EHR and RT 

systems should run independently; 

• be able to run on any platform (Windows, Unix, Linux),  

• independent of the programming environment in which it has been developed, 

• be able to work with multiple health institutes as a single backbone; 

• have reasoning capabilities; 

• be able to run in a secure box such that only authorized users can access the 

services of the RT system; 

• be able to handle billions of records in a fast and efficient way. 

 

APPLIED TECHNOLOGIES 

Object-Oriented Programming and Java 
To satisfy the platform independence requirement, we implemented the RTS in 

the object-oriented programming language Java. In defining the Java-classes (we 

explicitly use the term ‘Java-class’ to differentiate such Java-classes from classes that are 

part of an ontology) and the Java-objects that would be created during their execution, we 

maintained as far as possible the same principles as dictated by BFO. We took maximal 

advantage of the Java interface paradigm to design methods without fixed 

implementation. We also declared many Java-classes to be abstract such that they don’t 

need to supply specific implementations of each method that they contain. This is useful 

for providing implementations that are general enough to apply to most anticipated 

extensions of such a Java-class.  

 
Resource Description Framework 

In a statement such as “John (#IUI-1) has a fracture (#IUI-4) in his left forearm 

(#IUI-3)” the IUIs form the nodes in a graph whereas the relations between the 

particulars denoted by the IUIs such as #IUI-3 part_of #IUI-1 and #IUI-4 depends_on 

#IUI-3, form the edges in the graph. Therefore, the Resource Description Framework 

(RDF) (Manola & Miller, 2004) can be used as a representation language.  



RDF is based on the idea that the entities (also called resources) being described 

have properties which have values. The data model of RDF contains the following four 

components. 

• Resources: a resource is anything which can be named with a Universal 

Resource Identifier (URI), e.g. the URI for the particular #IUI-3 would be 

‘http://org.buffalo.edu/RTS#IUI-3’, where the part http://org.buffalo.edu/RTS# 

is the namespace URI and the part IUI-3 is the local name of the particular.  In 

our RDF representations the RT templates are implemented as resources 

themselves: each RT template resource is therefore prefixed with the RTS 

name space URI, i.e http://org.buffalo.edu/RTS#. We are using the label 

prefix rts: for the RTS namespace so that the RT template resource rts:IUI-1 

is equivalent to http://org.buffalo.edu/RTS#IUI-1. 

• Literals: atomic values, such as integers, strings and dates. 

• Properties: a property is a specific aspect, attribute or relation of a resource. 

A property is itself a resource. 

• Statements: any assertion in RDF is made by a statement. A statement is an 

ordered triple of the form (subject, predicate, object), where subject is a 

resource, predicate is a property, and object is a literal or a resource. 

The RDF framework provides a simple and elegant way for describing properties 

for resources. However, it does not provide any mechanism to declare properties for 

resources. Therefore, RFDS, an extension of RDF, has been proposed by W3C for 

declaring RDFS-classes (again, we explicitly use the term ‘RDFS-class’ to distinguish 

such classes from JAVA-classes and classes in ontologies which are the representations 

of universals) and their properties and relations. We have mapped the RT templates 

definitions to RDFS classes as shown in Figure 1; the arrows in the figure represent the 

direction of the relations.  

We have kept the names of the RDFS-classes and properties identical to the RT 

template names with minor changes. The A and PtoU− templates are renamed 

ParticularRepresentation and PtoLackU respectively. The IUIp property of the A 

template is implemented using an RDF :ID property. The P property in the PtoP 

template, i.e. an ordered list of the particulars, is implemented with an RDFS-class named 

http://org.buffalo.edu/RTS#IUI-3�
http://org.buffalo.edu/RTS�
http://org.buffalo.edu/RTS#IUI-1�


PList which is a subclass of the RDF:Seq class (represents an ordered list of resources).  

We have defined the RT URI rts:type//terminologysystemid/termid to either universals 

(u), concepts (co) or relations (r). The RT URI starts with the rts: prefix and the type part 

represents whether this URI represents a universal, a concept, or a relation. For example 

the URI rts:u//FMA/Left+forearm denotes the FMA representation for the universal Left 

forearm and the URI rts:r//FMA/part the FMA’s part relation. We have omitted the 

properties o (ontology id) and cbs (coding system id) from the PtoU, PtoP and PtoCo 

templates as they are merged in the RT URI for the respective properties, i.e. u, r and co.  

We have introduced an Identifier template which is used in situations when for a 

particular referred to in a patient encounter chart it cannot be determined at that time 

whether an IUI already has been assigned to it. The Identifier template assigns a unique 

number to the candidate particular which is not an IUI because it is not known at that 

time whether the ID satisfies the requirement of singularity. Because these identifiers are 

clearly distinguished from IUIs, it is possible to supply the missing information later and 

to replace the identifier accordingly with an appropriate IUI. 

Based on the RDFS schema as shown in Figure 1, each assertion of the RT 

template in RDF will receive the RDF ID as shown in Figure 2 which contains the 

graphical representation of the following RT templates: 

 

A  <IUI-1, IUI-10, 12/01/2006.>. 
PtoN <IUI-10, 12/01/2006, Name, John, IUI-1, 12/01/2006> 
A <IUI-3, IUI-10, 12/01/2006.>. 
PtoU <IUI-10, 12/01/2006, instance_of, IUI-3,  FMA, Left forearm, 12/01/2006> 
PtoP <IUI-10, 12/01/2006, has_part, OBO_REL , <IUI-1, IUI-3> 12/01/2006> 

 

Figure 2 shows that particular rts:IUI-1 (ParticularRepresentation assertion) enjoys the 

has_part relation (taken from the OBO_REL ontology (B. Smith et al., 2005)) with 

particular rts:IUI-3 which is an instance of the FMA Left forearm universal. The 

rts:pton_1 resource represents the PtoN  template assertion that assigns the name John to 

the particular referred to by rts:IUI-1. The rts:iuip property of rts:ptop_5 resource id 

(PtoP template assertion) tells us that the particular rts:IUI-1 is the subject of the relation 

has_part whereas the particular rts:IUI-3, as indicated by convention by the property 

rts:p is the object; thus rts:IUI-1 (John) has_part rts:IUI-3 (instance of the Left forearm). 



 

 

Figure 1:RT templates RDFS schema diagram. 
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Figure 2: RDF representation for the particular John has has_part relation with his Left 
forearm 
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RTS ARCHITECTURE 

We have designed the RTS such that it can be used as a server application as well 

as a Java library. As a server, the system runs as a standalone application inside an 

apache tomcat HTTP web server at port 8080 (The Apache Software Foundation, 2006) 

and it can communicate simultaneously with multiple EHR clients running at remote 

locations. The server is intended to be hosted by a health institute which serves as the hub 

for other health institutes (clients). The hosting health institute is responsible for taking 

care of the administration and privacy issues of the shared information stored at the 

server. The implementation of the RTS is downloadable from Sourceforge under an open 

source license (Manzoor & Ceusters, 2007). 

The architecture of the application is shown in Figure 3. Clients can connect with 

the system via a server interface based on web services or via the RT Access API 

interface, which is the kernel of the system. The web services forward the clients’ 

requests to the RT Access API which is responsible for data validation and management. 

All data serialization and retrieval activities are performed in the Data Access Layer. The 

reasoning component sends all the reasoning queries (requested by Data Access API or 

RT Access API) to external ontology or terminology systems for query execution. 

Figure 3: RTS Architecture 

RT Web Services RT Access API

Reasoning API RT Data Access API

Data Source

RT Server

Reasoning Systems

Client Client

 
 
RTS Web Services 

The web services are remote procedures hosted at an http server which are 

invoked through messages in line with the Simple Object Access Protocol (SOAP) 



(Mitra, 2003). Such messages contain the procedure information (procedure name, 

parameters and return type) and port type (location of the procedure). SOAP is platform 

independent so that the RT interface becomes accessible to all programming platforms 

and environments. 

The RT web services interface is written in the Web Services Definition 

Language (WSDL) (Christensen, Curbera, Meredith, & Weerawarana, 2001), an XML 

based service description language containing the abstract definition of a service such as 

service location, message format and protocol bindings (e.g. which protocol needs to be 

used for communication). The WSDL is also platform independent and clients can call 

the web services by reading the services details in the WSDL file. RTS uses Axis for Java 

(The Apache Software Foundation, 2005) to host the web services thereby taking 

advantage of the native support of WSDL that Axis provides.  

The RTS web services allow both retrieval and insertion of the RT templates in 

the RTS. They run over the http protocol (Booth et al., 2004) which is stateless in nature: 

both client and server forget each other after processing a request. However, in the RTS, 

it is required that the server remembers the clients since authentication and other safety 

and security principles require users to remain logged-in until no data have anymore to be 

entered or retrieved. To achieve this behaviour, we have used the session oriented 

communication paradigm (Kristol & Montulli, 1997). A session represents a logical 

connection of a client with the server and is created by the server upon the successful 

login of the client. The session is expired only if the client logs out from the system or if 

a timeout occurs. A session is uniquely identified by means of a unique session ID which 

is generated when the session is created. The client uses this session ID for any further 

communication in the context of the session. 

 
RT Access API 
 

All the functionalities that the RTS is able to provide to clients are implemented 

in the API module. The Webservices component forwards all requests to this API for 

execution.  As an alternative, Java clients can embed the RTS in their applications using 

this API. This API contains the modules RTRepository and RTVisGraph. 



RTRepository 
 

The RTS has been built to be independent of any data source technology. To 

achieve this goal, we have defined RTRepository as an abstract Java-class. This Java-

class provides all necessary services for managing the data based on the principles 

defined in the RT paradigm. It implements by default all services which are independent 

of any data source technology while the remaining services are defined as abstract. To 

manage the RT data in a specific data source technology, an extension of the 

RTRepository for that specific technology is required. We have decided to develop the 

RTRepositorySesameImp Java-class by extending the RTRepository such that it targets 

the SAIL API as a data source. The SAIL API is a Sesame API for manipulating RDF 

graphs (Broekstra, Kampman, & Harmelen, 2002).  

RTRepositorySesameImp works with the three data sources supported by Sesame: 

one contained in a RDBMS, another one in memory, and the third one being file-based. 

The RDBMS data source allows maintaining a large repository in the central server. The 

memory based repository is designed to maintain RT data for temporary purposes. For 

example, if a client receives RT templates in response of a service execution, the memory 

based repository can be used to iterate quickly over the results. 

At runtime an RTRepository instance is created by an instance of the 

RTRepositoryFactory class. The factory class construction helps in creating an instance 

of a specific implementation RTRepository without the need to change the RTS java 

code. It gets the repository implementation class information (currently 

RTRepositorySesameImp) from the RTS configuration file which maintains the different 

configurations of the RTS such as initialization parameters. This allows other 

implementations of the RTRepository to be plugged in.  

The RTRepository services use java objects in their arguments and returned 

results, and the java objects carry the information about the RT templates. The objects are 

the instantiation of the java classes which are mappings of the RDFS classes. 

The RTRepository class provides three types of services, i.e. insertion, retrieval 

and querying (with semantic query languages) of the RT data. 

Insertion services allow creating a new RT template in the repository. The most 

basic service assigns an IUI to a real world entity and creates its representation in the 



RTS. The java code ‘ParticularPresentation particular = 

repository.createParticularRepresentation(tap, IUIa);’ creates first a 

ParticularRepresentation template in the repository, assigns the metadata properties IUId 

and td, and then returns the instance.  

The next step is to assign detail to this particular. For example, the code ‘PtoU 

ptou = repository.createPtoU(particular.getIUI(),IUIa, “rts:r//OBO_REL/instance_of”, 

“rts:u//FMA/Left+forearm”, ta, tr);’ relates the particular created earlier to the Left 

forearm class (represented with PtoU template) of the FMA by means of the instance_of 

relation from the OBO relation ontology.  

Importantly, the RT paradigm does not allow any deletion operation in order to be 

able to always return to a state of the database as it was at a certain time in history. To 

avoid mistakes in creating new templates in the RTRepository, the templates are cached 

right after the create operation. The client can remove or modify the templates from the 

cache as long as the commit service has not been called.  

The API retrieval methods help in searching the particulars in the RT 

repository. Particulars can be searched by means of the names associated with them, the 

ontology classes of which they are instances, or the creation and observation dates (Table 

2). 

 
Table 2: The RTRepository retrieval services to search particulars by means of their 
associated detail 

Service Name Service Description 
getParticularsWithPtoN 
(iuip, nt, n, iuia, taRange, 
tdRange) 

This service retrieves the particulars and the associated PtoN templates.  
The query ‘getParticularsWithPtoN (null, “name”, “John”, null, null, 
null)’ (which particulars have the name John) will for the data shown in 
Figure 2 retrieve the templates with resources ids rts:pton_1 and rts:IUI-1. 

getParticularsWithPtoCo 
(iuip, co, iuia, taRange, 
tdRange) 

This service retrieves the particulars and the associated PtoCo templates.   
The query ‘getParticularsWithPtoCo (null, “rts:co//SNOMED-
CT/91419009”, null, null, null)’ retrieves the particulars annotated with the 
SNOMED-CT code ‘91419009’, which is a code for Left forearm fracture. 

getParticularsWithPtoU 
(iuip, u, iuia, taRange, 
tdRange) 

This service retrieves the particulars which are instances of the universal u.  
The query ‘getParticularsWithPtoU (null, “rts:u//FMA/Forearm”, null, 
null, null)’ retrieves the instances of the FMA class denoting the universal 
Forearm. 

getParticularsWithPtoLackU 
(iuip, u, iuia, taRange, 
tdRange) 

This service retrieves the particulars which do not stand in any lacks 
relation to the universal u. 

 
 



All arguments in the above services can be null. Because the search pattern in the 

services might match with several thousands of particulars and the network bandwidth 

might not allow the transfer of that many results to the clients, we have set the limit by 

default to return the first 200 templates. What selection will be returned depends on the 

data source technology. However, the limit can be changed in the RTS configuration file. 

In RTRepository, particulars are connected to each other via relations such as the 

has_part relation between John (#IUI-1) and his Left forearm (#IUI-3) as shown in 

Figure 2. We have exploited these relations for retrieval as well and designed services to 

search particulars by means of the relations through which they are connected. Some 

examples are shown in Table 3. 

 
Table 3:  The RTRepository retrieval services to search particulars connected to each 
other by ontologies relations. 
 

Service Name Service Description 
getParticularsWithPtoPByPtoU 
(iuip, r, u, r2) 

This service retrieves all the particulars that stand in relation r to particular iuip 
and which are instances of a universal u1 which according to the ontology in 
which u and r2 are represented, stands in the r2 relation to u. When the query 
‘getParticularsWithPtoPByPtoU (rts:IUI-1,  rts:r//OBO_REL/has_part, 
rts:u//FMA/Upper+limb, rts:r//FMA/part+of)’ is executed over the data in 
Figure 2, it returns the particular rts:IUI-1 (John), his left forearm (represented 
by rts:IUI-3) and the relation has_part (represented rts:ptop_5) assuming that 
in the FMA Left forearm has the part of relation with Upper limb. 

getParticularsWithPtoPByPtoN 
(iuip, r, nt, n) 

This service retrieves all the particulars with the name n of nametype nt and 
that stand in relation r to particular iuip. The query 
‘getParticularsWithPtoPByPtoN (rts:IUI-1, null, name, Manzoor)’ would 
retrieve the particulars whose lastname is Manzoor and that stand in some 
relation to John (IUI-1). 

getParticularsWithPtoPByPtoCo 
(iuip, r, co) 

This service retrieves all the particulars which are annotated with co and that 
stand in relation r to particular iuip. The query, for example, 
‘getParticularsWithPtoPByPtoCo(rts:IUI-3,null rts:co//SNOMED/91419009)’ 
would return the fractures (annotated with SNOMED code 91419009) that 
have occurred on John’s Left forearm. 

 

Querying the RTS using SPARQL 
Because the RT data are expressed in RDF, RDF query languages such as RQL 

(Foundation for Research and Technology – Hellas, 2003), SPARQL (Prud'hommeaux & 

Seaborne, 2006) and SeRQL (Broekstra et al., 2002) can be used for retrieval. To this 

end, the RTRepository comes with the service ‘repository.query(querystring, language)’ 

which has an argument for the query string and a second one for the name of the query 



language in which the first argument is expressed. The SeRQL query language is 

implemented with the help of the Sesame SeRQL query language module, and the 

SPARQL query language is implemented with the help of the ARQ query module (a 

SPARQL processor for Jena) (RDF Data Access Working Group, 2007). Because the 

RTS repository is built over the Sesame RDFRepository, the interoperability between the 

Sesame RDFRepository and Jena is done by means of a modified version of the Jena 

Sesame Module. The RQL query language is supported by Sesame SAIL but this has thus 

far not been tested within the context of the RTS. We will limit our discussion here to 

SPARQL.  

Listing 1 enumerates the triples involved in the graph shown in Figure 2 

representing that #IUI-3 (John’s left forearm) is part of #IUI-1 (John). 

 
Listing 1: Triple View of the RDF 
 

1 rts:IUI-1     rdf:type  rts:Particular 
2 rts:IUI-1     rdf:tap    “12/01/2006” 
3 rts:IUI-3     rdf:type  rts:Particular 
4 rts:IUI-3     rdf:tap   “12/01/2006” 
5 rts:ptou_4  rdf:type  rts:PtoU 
6   rts:ptou_4  rts:iuip   rts:IUI-3 
7   rts:ptou_4  rts:u      rts:t//FMA/Left+forearm 
8   rts:ptou_4  rts:ta     “12/01/2006” 
9   rts:ptou_4  rts:tr     “12/01/2006” 

 
SPARQL works with query triples that look very similar to RDF triples, but that 

may contain variables instead of constants for subject, predicate or object. For example, 

the query ‘SELECT ?r WHERE{?r rts:iuip <rts:IUI-3>.}’ has two clauses: SELECT and 

WHERE. The SELECT clause contains the variable declaration, and the WHERE clause 

contains the query search patterns. Because the variable is placed in the subject position, 

the query returns the list of subjects from matching triples. The pattern at line 3 of the 

query (no restriction for the subject) matches the one triple at line 6 in Listing 1. The 

returned result is “rts:ptou_4”, i.e. the URI of the matching RT template. The query 

‘SELECT ?ptou 2 WHERE{?ptou rts:u rts:t//FMA/Left+forearm.}’ requests the resources 

(PtoU templates) which are related to the universal Left forearm. 

The RTRepository executes the queries, whether in SPARQL or another supported 

query language, in two steps. In the first step, it passes the query to the corresponding 

query engine which upon execution returns the results. The results are the URI for the RT 



templates. The repository, in the second step, then queries the Data Access API 

(described further down) to retrieve all the attributes of the returned templates URI. 

Of course, users of EHR systems are not expected to query the RTRepository 

directly through RDF query languages. Rather, these queries should be generated on the 

basis of the graphical user interfaces provided by the EHR systems. Making that happen 

is part of the work to be conducted when interfacing an EHR with the RTS.  

RTVisGraph 
This component is an extension of the JGraph java library for displaying graphs 

(JGraph Ltd, 2006) which has the ability to generate images in Jpeg. The component can 

be used for interactive query expansion using the query services just described.  A search 

for any fracture on John’s forearm for instance can be executed in three steps. In the first 

step, John (rts:IUI-1) is searched. In the second step, the graph is expanded for the related 

particulars, in this case rts:IUI-3 (Left forearm). Finally the graph expands further from 

rts:IUI-3 by retrieving the related particulars which are annotated by concept codes, in 

this case rts:IUI-4 (annotated by SNOMED fracture code).   

 

RT Data Access API 
This is the low level data access API which provides persistence services for the 

RT repository. It provides an abstract view of the data source to 

RTRepositorySesameImp. This layer utilizes currently the services of SAIL to store and 

retrieve RDF graphs, while the Jena API (HP Labs Semantic Web Research, 2006) for 

RDF manipulation which does the same job as SAIL might be another choice. SAIL 

comes with an RDFRepository java interface, which represents a logical data repository 

for RDF graphs and comes with three services: 

• addStatement (subject, predicate, object):  This service inserts a new RDF 

statement in the repository. 

• getStatements (subject, predicate, object):  This service takes a search 

pattern as a 3-place argument and returns the RDF statements matched with 

the pattern. Any argument in the pattern could be null. 



• hasStatement (subject, predicate, object): This service checks whether a 

triple pattern exists in the repository or not. Its argument pattern is similar to 

the getStatements service.  

The RTRepositorySesameImp class calls these basic services for all kinds of 

retrieval and insertion operations. For example, at some point during a query execution, 

the RTRepositorySesameImp class creates a PtoU resource as ‘PtoU ptou = new 

PtoUImp(“ptou_4”)’.  In this example the node object is created by passing the id of the 

PtoU template. PtoUImp is the implementation of the PtoU interface for the SAIL API. 

For retrieving the universal u and the other properties, the object calls the getStatements 

service. In a similar way to insert a RT template in the repository the 

RTRepositorySesameImp class calls the addStatement for each attribute (such as ta, tr, 

iuid an iuia etc) of a RT template.  

As a further improvement, rather than using the implementations of the SAIL API 

directly, we have written the RDFRepositoryWrapper over the implementations of SAIL. 

The purpose of the wrapper is to call under certain circumstances the reasoning services 

described below. 

 
Figure 4: RDFRepository Implementations 
 

 
 

Finally, because the Sesame default implementation for RDBMS is efficient 

during retrieval, but slow during insertions in large repositories, we have implemented an 

RDFRepository interface for the RTS native database so called RDFRepositoryForNative 

which is more efficient than the Sesame default implementations for both retrieval and 

insertion.  

 



Reasoning API 
Reasoning is a core part of the RTS and its purpose is double: first to avoid 

inconsistent data from being entered, and second to draw inferences during the execution 

of the search queries using the generic knowledge expressed in the ontologies used to 

annotate the data and by exploiting the reasoners that operate on them. Various reasoners 

exist, some being specific to a particular ontology such as the OQAFMA reasoner of the 

FMA (Mork, Brinkley, & Rosseb, 2003), some coming with a DIG interface (Bechhofer, 

2003) for description logic representations while others use directly OWL-DL. 

In order to be able to deal with ontologies of various sorts and their associated 

reasoners, we developed the Reasoning API which helps in sending reasoning queries 

uniformly to different ontology systems. The API has an abstract class called 

OntologyConnector which provides an interface to the external ontology systems. The 

OntologyConnector interface services (as shown in Table 4) are designed based on the 

principles defined in the OBO Relation Ontology (B. Smith et al., 2005) and Basic 

Formal Ontology (Grenon, Smith, & Goldberg, 2004). The interpretations of the 

OntologyConnector services are specific to a particular ontology system; therefore, a 

separate implementation of the OntologyConnector is required for each ontology which is 

used to annotate the particulars in the RTS. Currently, we have only implemented an 

extension of the OntologyConnector for the FMA, because this is the only one thus far 

that has a broad coverage and is built on sound ontological principles. Later we will add 

implementations for OWL based ontologies.  

 

Table 4: OntologyConnector class services 
 

Service Name Service Description 
isUniversalExist(u): This service checks whether a universal u exists in the ontology system. 
isRelationExistBetweenUniversals 
(u1, r, u2): 

This service checks whether the relation (r) exists between universals u1 and 
u2, e.g. Left eye subclass Eye and Left forearm partOf Upper limb. 

getRelations(u1, u2) This service returns the list of the relations that exist between two univerals 
u1 and u2. 

 
 

Description logics are widely used for building ontologies. The reasoners for such 

ontologies may take from 1 second to a day to compute inferences over the ontology 

classes depending on their size and definitional complexity. Therefore, instead of directly 



communicating with the reasoners for each ontology, it is better to compute all inferences 

at one time and then store the inference graph in a database; in OWL-DL ontologies the 

inference graph can be stored in Jena repositories easily as they have native support of 

OWL. 

The execution time of the OntologyConnector services can range from 

milliseconds to minutes, depending on the query execution time in the external ontology 

system. To handle this issue, the OntologyConnector caches the results returned from 

these systems. The cache is stored in a RDBMS. During the execution of any of the 

OntologyConnector services, it first searches in the cache.  

Reasoning is performed for any query which involves PtoU templates. If, for 

example, the query getParticularsWithPtoPByPtoU(rts:IUI-

1,rts:r//OBO_REL/has_part,rts:u//FMA/Upper+limb, rts:r//FMA/part+of) is executed 

over the data of Figure 2, then first all particulars which are related to the particular 

rts:IUI-1 via the has_part relation are retrieved; in this case rts:IUI-3. Then it retrieves 

the universals which annotate rts:IUI-3 by retrieving the rts:potu_4. Finally, it requests 

the ontologies in which the universals are represented by calling the 

isRelationExistsBetweenUniversals(“Left forearm”, “Upper limb”, “part of”) service 

from the OntologyConnector instance of the specialized class implemented for the FMA 

ontology. If the service returns true, then it returns the resulting particulars with their 

associated templates. 

 

RESULTS 

To check the performance and stability of the RTS, we have tested the system by 

running the search queries over various database sizes up to 1.3 million RT templates. To 

that end, we developed a DataGenerator module which generates data on the basis of 

two sorts of XML files. Files of one sort contain lists of patients’ names. Files of the 

other sort (term list file) contain lists of body part universals from the FMA ontology 

including an ICD9 code to indicate a possible pathology associated with that body part. 

The DataGenerator tool first generates the patient particulars by parsing the patient 

names list and then for each patient it generates randomly a number of body parts 

particulars and disease particulars associated with the body parts by parsing the term list 



configuration file. The result is that for each patient a random number of body parts were 

declared to be instances of universals that are represented in the FMA and associated with 

the respective patients by means of the has-part relation as defined in the OBO-Relation 

ontology (B. Smith et al., 2005). To each body part, we associated a disease via the 

depends-on relation. The disease particulars are annotated with ICD9 codes.  

To test the retrieval capabilities of the RTS, we randomly picked three patients 

from the database. The first was related to 22 particulars, the second to 46 and the third 

with 74. The test case contained 16 queries which ran over the three patients. Each query 

involved a combination of several services. During the test, inferences about the FMA 

universals were taken from the cache to exclude in the analysis any computation time for 

which the RTS is not responsible. All tests were run on the same machine with an Intel 

Core 2 duo E6400 processor, Windows XP as operating system, 1 GB RAM and the My 

SQL database 5.1.  

Table 5 compares the retrieval times in milliseconds for 

RDFRepositoryRTNativeImp (RT native RDBMS RDF repository) and RDFRepository 

(Sesame RDF repository for RDBMS) obtained by averaging the results of 16 tests. The 

retrieval time increases as the database size increases, but not at the same rate. 

 
Table 5  Comparison between the RTS native and Sesame RDBMS persistence for the 
query execution performance by evaluating the query set different data sizes of the 
RTRepository. 
 

     Query set execution time in 
milliseconds. 

9 # of RT 
Templates 

10 # of 
Particulars 

11 in the RTS 
native 

12 persistence 

13 in the Sesame 
native 

14 persistence 
15 162552 16 51706 17 195 18 214 
19 350075 20 111300 21 200 22 230 
23 540430 24 171818 25 214 26 237 
27 788143 28 250663 29 219 30 250 
31 1279908 32 406360 33 477 34 600 

 



 

RELATED WORK 

The idea of representing particulars in computer systems is not new. (Borgida & 

Brachman, 1993) reports on a DL system which represents knowledge as consisting of 

individuals and their relations, where a set of individuals having a similar behavior are 

represented as a member of a concept. Such systems are built to compute inferences over 

the concepts (TBox) and individuals (ABox), e.g. individual John is an instance of the 

patient concept and the patient concept is sub-type of the person concept. However, as 

most DL systems are built on the concept based paradigm exclusively, where a concept 

may not correspond to reality (Ceusters, Smith, & Flanagan, 2003), a consequence is that 

even the most powerful DL may lead to conclusions that might not correspond to reality. 

Instance store is an example of another system which is built along the same lines of DL 

systems. Based on OWL-DL, it maintains a large pool of instances (Bechhofer, Horrocks, 

& Turi, 2005), but excludes relations between them, hence the name ‘role free ABox’. 

The Digital Object Identifier (DOI) system has been developed to keep track of 

the identification, trading, protection, and monitoring of all forms of rights over both 

tangible and intangible assets. The system allows to assign a unique string to an entity but 

exhibits some problems at the level of the definitions used to describe what type of 

instance is dealt with. In (Ceusters & Smith, 2007) the RT paradigm is proposed as 

solution.  

In (Bouquet, Stoermer, Mancioppi, & Giacomuzzi, 2006) the OKKAM system is 

proposed to keep track of the identifiers and names assigned to entities, and this in 

response to the inadequacy of URIs to unambiguously identify entities. OKKAM, 

however, does not deal with relations between the entities. 

 
CONCLUSION & FUTURE WORK 

In this paper, we have described a prototype of a Referent Tracking System which 

is able to maintain a large pool of data about particulars and their relations based on the 

Referent Tracking paradigm. The system is implemented to serve as a back-bone for 



EHR applications either in a client server setting by means of web services or embedded 

in the EHR applications themselves.  

The system maintains references to particulars and their relationships under the 

form of a RDF graph together with the information concerning which universals the 

particulars instantiate and the concept codes from the coding systems to which they are 

associated. By resorting to Basic Formal Ontology and the OBO Relation Ontology, and 

because of the referential semantics provided by the Referent Tracking paradigm, the 

data in the graph mirror the structure of reality. This set up paves the way to make 

machines understand EHR data unambiguously and is, we believe, an important 

contribution in reaching semantic interoperability. 

The prototype is a first, though important, step towards deployment but much 

more work is required. Because EHR systems run under strict safety, security and 

confidentiality regulations, the RTS must follow the same principles.  To protect the RTS 

against unauthorized access, we have a security module which is currently in an early 

stage of development. Thus far, the module only verifies a client on the basis of the user’s 

user-name and password. Encryption and transaction certification (R. Housley, W. Polk, 

W. Ford, & Solo, 2002) will be dealt with later as well as improved access control 

concerning which parts of the graph are allowed to be accessed by a particular user.  
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