
A Middleware Approach to Integrate Referent Tracking in EHR Systems.

Shahid MANZOOR, MSc1, Werner M. CEUSTERS, MD1, Ron RUDNICKI, MA1

1 Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, NY, USA

Abstract

The purpose of a Referent Tracking System (RTS) is
to manage the representation of particulars in a
database and to share this information with
Electronic Health Record (EHR) systems. We
describe how an implementation of such a RTS can
be integrated in an EHR system using middleware
technology based on web services. We describe the
functional and technical requirements of such an
approach and document our experiences with
MedtuityEMR, an EHR system that stores patient
data in XML.

Introduction

The Referent Tracking (RT) paradigm has been
introduced to avoid the ambiguities that arise when
using generic terms (from a coding system or
terminology) to annotate patient data in Electronic
Health Records (EHR).1

When, for instance, John consults a physician for a
fracture in his left leg, the physician might use
SNOMED CT code 71620000 (‘fracture of femur’)
to refer to John’s fracture when annotating for that
specific encounter his diagnosis in the EHR. If John
later suffers from a second fracture in the same bone,
the physician will probably follow the same
procedure as before and enter the same code in
relation to this new encounter. The problem is that on
the basis of these two encounter descriptions one can
not determine whether the codes are referring to the
same numerical fracture (as for instance would be
clear if the diagnosis were diabetes since a patient
cannot have two different ‘diabetes-es’ in his life) or
different fractures. The main reason is that codes
from terminological systems or ontologies do not
identify uniquely the entities to which they are
assigned in the context of clinical record keeping.
They rather describe what generic category the
entities to which they are assigned belong to.

The RT paradigm resolves these ambiguities by
assigning a globally unique ID, called Instance
Unique Identifier (IUI), to the particular entities –
hereafter called ‘particulars’ – on the side of the
patient.1,2 In the previous example, both fractures
would get different IUIs while still being annotated
with SNOMED-CT code 71620000.

We have developed a Referent Tracking System
(RTS) to manage the representation of particulars in
a database and to share this information with EHR
systems.3 This allows EHR systems, by means of the
IUIs communicated to them by the RTS, to
unambiguously refer to entities on the side of the
patient, while still being able to further characterize
the nature of these particulars by using terms and
codes from terminologies.

Objectives

In this paper, we describe the design of a middleware
application that allows the RTS to communicate with
the EHR system MedtuityEMR,4 and provide some
guidelines on how to build similar applications for
other EHR systems. Under our design, the
middleware application interprets the patient
encounter data - which in MedtuityEMR are
expressed in XML - with the objective to assign the
appropriate IUIs to the particulars referred to in the
MedtuityEMR data. Our focus here is on mechanisms
that can be used to assess whether a particular
referred to in an EHR has already been assigned a
IUI in the RTS and this in order to maintain the
global uniqueness of the identifier.

Materials and methods

Referent Tracking System

The RTS is a server which runs as a standalone
application inside an apache tomcat HTTP web
servers at port 8080. The server can communicate
simultaneously with multiple EHR clients running at
remote locations. The system is intended to be hosted
by a health institute which serves as the hub for other
health institutes (clients). The data representing
particulars in the RTS are based on the templates
defined in the RT paradigm (Table 1).5

For example, the PtoCo template

 <IUI-10, 12/01/06, 71620000, IUI 1,

 SNOMED, 12/01/06>

represents a Femur-Fracture particular annotated with
the SNOMED-CT code71620000.

Representation Name Attributes Set
Description
ParticularRepresentation < IUIp, IUIa, tap>
Act of assignment of IUIp to a particular at time tap by
the particular referred to by author IUIa
PtoN < IUIa, ta, ntj, ni, IUIp, tr>
The particular referred to by IUIa asserts at time ta that ni
is the name of the nametype ntj assigned to the
particular referred to by IUIp at tr.
PtoCo <IUIa ta, cbs, IUIp, co, tr>
The particular referred to by IUIa asserts at time ta that it
is annotated by concept code co from terminology
system cbs at tr,
PtoP <IUIa, ta, r, o, P, tr>
The particular referred to by IUIa asserts at time ta that
the relationship r from ontology o obtains between the
particulars referred to in the set of IUIs P at time tr.

Table 1: RT templates description

MedtuityEMR

MedtuityEMR is an EHR application developed by
Medtuity Inc. In addition to clinical documentation,
the features of MedtuityEHR include patient
tracking, document management, messaging,
reporting, and prescriptions.

MedtuityEMR has specially designed controls for
quickly entering encounter information. Complicated
encounters can be accurately documented through
mouse-clicks by means of templates relevant to 18
medical specialties such as Urology, Surgery, ENT,
and Neurology. There are more than 1000 of these
templates for conditions and treatments such as
fractures, dental pain, head injury, and so forth.

Once a template has been filled out, MedtuityEMR
generates a structured progress note which then is
stored in compressed XML. An example is the
control shown in Figure 1 taken from
MedtuityEMR’s ‘fracture-femur’ template which
allows the clinician to enter data about the strength
with which the patient can move the ankle.

Figure 1: Input control for measuring the strength

for flexions of a patient’s feet

Listing 1 shows an excerpt of the XML generated on
the basis of the input provided in Figure 1 for patient
John. The text in italics corresponds to the first two
lines in the control. PtSession forms the root element
of the XML file. The patient’s demographic data are
in the PtsInfo element (in our example just showing
last name and date of birth). PtVisitInfo contains the
encounter description through a hierarchy consisting
of Leveln (e.g Level1) and Item. The mapping
between the XML elements corresponding to patient
data and the GUI controls is captured by the GUID
number.

<PtSession>
 <PtsInfo m_PtLastName="John"
m_PtDOB="01/01/1985 />
 <PtVisitInfo m_PtTimeIn="02/27/2007 02:44 PM">
 …
 <Level1 m_TemplateName ="Fracture - femur"
m_TemplateGUID="{1379254 - C66D - 4B47 - A055-
CEA1A0A53C87 >
 Item m_Text=”Examination”>

 Level4 m_TemplateName =”” >
 <Item m_Text="strength of right foot plantar flexion
is 3/5; strength of left foot dorsi flexion is 2/5 ; "
m_GUID="{65B2695 -81A1 - 4291 - B26F -
344EBFD2B56B} />
 Level4>
 ……
 Item>
 </Level1>

 </PtVisitInfo>
</PtSession>

Listing 1: An excerpt of the XML generated for the

fracture-femur model

Results

Middleware Application

EHR applications can benefit from the RTS by
directly calling its services. If an EHR application is
complex, such as MedtuityEMR, containing many
input screens for different disease templates, then
directly accessing the RTS services would require
programming changes in almost all parts of the EHR
application. Therefore, we designed a middleware
application which provides a bridge between the RTS
and MedtuityEMR. As MedtuityEMR saves the
patient encounters as XML, we have exploited this
design and use the same XML for the communication
between the RTS and MedtuityEMR. The
middleware component identifies particulars by
iterating through the XML and calls the services of
the RTS on behalf of MedtuityEMR to annotate the
particulars with IUIs. This approach keeps the
MedtuityEMR application and the RTS integration
specific implementations at separate places. The

design of the middleware application is shown in
Figure 2; the arrows show the data flow between the
components.

Figure 2: Architecture of the middle ware

application

The middleware component is designed to run as a
standalone application and to provide its interface to
MedtuityEMR via web services following several
communication scenarios which each require a
distinct level of integration. One scenario is to
monitor the MedtuityEMR database for new
transactions related to patient encounters. As soon as
the monitoring component (MedtuityDBMonitor)
finds newly entered patient data, it forwards them to
the RTSEhrBridge component for further processing.
Another approach is that MedtuityEMR sends the
data actively via web services to the middleware
application just before or after saving the encounter
data. After annotating the identified particulars with
the appropriate IUIs, the middleware application
returns the results to MedtuityEMR. This approach,
in contrast to the previous one, allows MedtuityEMR
to manage the IUIs at the time of documenting the
encounter. Of course, both approaches require
software changes to be made in MedtuityEMR, the
latter more drastically than the former.

The middleware application is also designed as a java
library so that EHR applications can embed it easily
in their programming environments.

Term Mapping Database

The information regarding which particulars are
possibly referred to when an input control is used in
the context of an encounter is stored in the term
mapping database. ‘Possibly’ here refers to the fact
that some particulars may already be listed in the
RTS such that, in line with the RT paradigm, the IUI
already assigned to them has to be used for further
reference. Other particulars might not yet be listed in
the RTS, in which case a new IUI has to be created.
Deciding what is the case for a given data element,

can be accomplished by looking at the ontological
characteristics of the universals (types, kinds) of
which the particulars under scrutiny are instances and
under what scenario they are referred to in
MedtuityEMR. We identified four different cases.

Term
Mapping

RTS

MedtuityEMR

middlewarecore

ClasApplication
Key

ClasApplication
Key

RTSEhrBridge

BuilderForMedtuity

middleware
MiddleWareService

MedtuityDBMonitor

Medtuit
DB Case 1 involves particulars which exist throughout

the life of a particular patient, examples being the
patient himself, most body parts (e.g. his brain), some
diseases (e.g. his diabetes) and some conditions such
as his blood pressure. Whenever these particulars are
first observed they are assigned an IUI, and that IUI
is to be used in all future EHR statements made about
them. This case encompasses also particulars which
do not necessarily exist throughout a patient’s life
time, but which are assumed to still exist when they
are referred to in the context of a new observation.
Thus a patient can indeed lose his left foot, but if a
clinician states to have measured the strength of a
patient’s left plantar flexion, then this foot must exist.

Some particulars start to exist at t1 and disappear at
t2, such as, hopefully, a fracture of the femur, or the
flexion of his foot. Furthermore, John may have more
than one femur fracture in his life and, without doubt,
will flex his left foot quite often, each flexion being a
new particular. However, in the context of, for
instance, a follow-up encounter, some particulars can
not be the same as observed during a previous
encounter, while others may be the very same
particulars as observed before. This leads to three
further cases.

Case 2 involves particulars which may be re-
observed but the context of the encounter is such that
it can be decided upon automatically whether or not a
new or existing one is observed. As an example, if
John breaks his left leg and therefore visits a clinician
at t1 for treatment, then the EMR application would
record that John (#IUI-1) has femur fracture (#IUI-2)
in his left leg (#IU1-3). For every follow up visit
(t2….ti) for that particular fracture, #IUI-3 must be
used. If John later breaks again his left femur then a
new IUI must be assigned, and that this is the case
can be derived from the context that a new visit is
entered, and not a follow-up visit.

Case 3 involves particulars which can not be re-
observed during a new encounter, a foot flexion
being an example, a measurement act being another
one. Here we have primarily processes which have a
life-time that is shorter than the duration of an
encounter.

Case 4 involves particulars which may be re-
observed but the context of the encounter is such that
– in contrast to case 2 – it can not be decided upon

automatically whether a new or existing one is
observed. If, for example, the RTS already contains a
reference to a femur fracture in John which was
created in the context of a MedtuityEMR disease
model other than the femur-fracture disease model,
then activation of the femur-fracture model alone
provides not enough evidence for the former
reference to be used automatically.

The practical consequence of the distinction drawn is
that for particulars in case 1, a new IUI is to be
assigned the 1st time they are observed, and that IUI
is to be retrieved afterwards. In case 2, the EHR
application can inform the middleware component
whether a new IUI is to be assigned. In case 3, the
RTS would create automatically a new IUI without
any further questions to be asked. In case 4, the
clinician has to provide the information whether or
not a new particular is involved

As an example, the data-entry control in the state
shown in Figure 1 would make MedtuityEMR store
the string ‘strength of right foot plantar flexion is
3/5’ in John’s EHR. Therefore, the Term Mapping
Database, which can be viewed as an application
ontology for MedtuityEMR, contains the information
on how this string is to be interpreted in terms of the
underlying particulars that must exist in order for the
string to be a true statement. That information is
derived on the basis of an ontological analysis carried
out a priori.6 Table 2 shows the results of this
analysis, together with the classification of the
particulars according to the 4 cases identified above.
The Term Mapping Database contains such an
analysis for each data control used in MedtuityEMR.
The Term Mapping Database also keeps track of
which particulars belong to which disease model
such that decisions on whether or not a particular
requires a new IUI in the context of a follow-up visit
can reliably and automatically be made. In addition,
the Term Mapping Database contains the information
about the relations that must exist between particulars
if they are referred to in the context of a specific
disease model.

Web Services

The Web Services provides an interface to the remote
clients by forwarding all the clients’ requests to the
bridge component. They are remote procedures that
can be invoked from any programming environment.

The middleware core component

The middlewarecore component receives the
MedtuityEMR patient’s encounter XML by
monitoring the database or the XML is sent by

Particular Case
P1: John’s act of right foot plantar flexion 3
P2: the act of giving counterforce to P1 3
P3: the assessment that the equality of
forces with which P1 and P2 are applied
justifies a score of 3/5

3

P4: the person who performed P3 1
P5: John’s right foot plantar muscle group 1
P6: the disposition of John’s right plantar
muscle group to plantar flex with a certain
strength

1

P7: John 1
P8: John’s femur fracture 2

Table 2: Particulars involved in the registration that
‘the strength of right foot plantar flexion is 3/5

MedtuityEMR through web services. It is composed
of two software components: BuilderForMedtuity
and RTSEhrBridge.

The BuilderForMedtuity component is a parser for
MedtuityEMR’s XML structures. It extracts the EHR
statements (such as strength of right foot plantar
flexion is 3/5) by iterating over the XML source.

The RTSEhrBridge component first retrieves the
configuration of involved particulars for each
statement (as in Table 2) from the Term Mapping
Database. Based on this information as well as on
the encounter context information (whether a new
visit or a follow-up is being documented), it decides
whether IUIs for the particulars are first to be
searched for in the RTS, or are to be created directly.

To assess whether particulars are already listed in the
RTS, the RTSEhrBridge queries for these particulars
by means of statements of the form:

getParticularsByPtoPWithPtoCo(“IUI-1”, null,
“rts:co/SNOMED-CT/24176006”);

In case the particulars are not listed in the RTS, or
when the information in the Term Mapping Database
states this directly, the RTSEhrBridge requests the
RTS to create new IUIs for those particulars by
means of a series of statements of the form:

• IUI-2 = rts.createParticular(“02/27/2007”,
“IUI-10”);

• createPtoCo(“IUI-2, “IUI-10”,
“rts:co/SNOMED-CT/24176006”,
“02/27/2007” ,..);

• createPtoP(“IUI-1”, “IUI-10”, “has_part”,
“IUI-2”, “02/27/2007” ,..);

The createParticular method, in the example above
concerning IUI-10 which stands for John, creates a
reference to a particular and returns its IUI. The

createPtoCo associates the MedtuityEMR Right foot
term with the particular IUI-2. The createPtoP
method asserts the has_part relation between IUI-1
and IUI-2. The relation information between the
particulars IUI-1 and IUI-2 is also found in the Term
Mapping Database. After the IUI assignment is
done, the RTSEhrBridge class returns the IUIs to the
BuilderForMedtuity. When encounter data are sent to
the middleware component, BuilderForMedtuity
would associate the IUIs at the appropriate places in
the XML, e.g along with the “strength of right foot
plantar flexion is 3/5” phrase decomposed into
particulars in the Level4 element shown in Listing 1,
and finally the resulting XML is sent back to
MedtuityEMR.

In cases when it can not be determined whether a
new or existing particular is observed, for instance
under a scenario with less intimate integration or
when the clinician is not willing to supply the
additional information, the RTSEhrBridge class
assigns a unique identifier to the particular which is
not an IUI because it doesn’t satisfy the requirement
of singularity. This identifier would be created in the
RTS by means of a statement of the type: ‘ID =
createIdentifier(tap, IUIa)’. Because these identifiers
are clearly distinguished from IUIs, it is always
possible to supply the missing information later and
to replace the identifier accordingly with an
appropriate IUI.

Conclusion

The RTS application stores data in RDF and has
services to query the data using RDF query
languages such as SPARQL. As a consequence,
integrating the RTS into an EHR not only eliminates
ambiguous references to particulars, but also converts
the data into a formal representation which is
optimized for automated reasoning. Particulars can
be declared to be instances of the universals
represented by the classes of a realism-based
ontology or annotated with concept codes from
terminologies such as SNOMED CT. For example in
our particular scenario (John’s femur fracture) some
assertions are in the RTS stored in triples of the form:

#IUI-1 rts:r//OBO_REL/has_part #IUI-2
#IUI-1 co rts:co//SNOMED-CT/116154003
#IUI-2 co rts:co//SNOMED-CT/24176006

The first statement represents that particular #IUI-1
enjoys the has_part relation with #IUI-2. The second
and third assertions represent that the particulars
#IUI-1 and #IUI-2 are respectively annotated with
the SNOMED CT codes for patient and Extrinsic
muscles of foot. This improves interoperability

between EHR applications and paves the way for
more advanced clinical decision support systems.

Our approach covers all data control templates
offered by MedtuityEMR except those which expect
free text input. Although MedtuityEMR allows
patient encounters to be documented either as a new
visit or a follow-up, the clinicians using the system
are not bound by it so that because of this, IUIs
cannot always be generated or retrieved. This is
however a matter of proper user education, rather
than an implementation issue on the side of the RTS.

Although we have thus far applied our technique to
MedtuityEMR only, we are keeping our design
generic so that it is able to work with other EHR
systems as well. This requires for each such EHR
system the implementation of a component similar to
BuilderForMedtuity and to configure the Term
Mapping Database in such a way that it reflects the
type of data stored in the EHR.

References

1. Ceusters W and Smith B. Tracking Referents in
Electronic Health Records. In: Engelbrecht R. et
al. (eds.) Medical Informatics Europe, IOS Press,
Amsterdam, 2005;:71-76.

2. Ceusters W and Smith B. Referent Tracking and
its Applications. In Proceedings of the
WWW2007 Workshop: Identity, Identifiers,
Identification. Banff, Canada, May 8, 2007,
CEUR Workshop Proceedings, online http://ceur-
ws.org/Vol-249/submission_105.pdf.

3. Manzoor S, Ceusters W and Rudnicki R.
Implementation of a Referent Tracking System.
Forthcoming in the Special Issue on Health
Information Linkage and Integration of the
International Journal of Healthcare Information
Systems and Informatics (IJHISI) 2007.

4. Medtuity Inc. MedtuityEMR. 2007. Available
from: http://www.medtuity.com/.

5. Ceusters W and Smith B. Strategies for Referent
Tracking in Electronic Health Records, Journal of
Biomedical Informatics 2006, 39:362-378.

6. Rudnicki R, Ceusters W, Manzoor S and Smith B.
What Particulars are Referred to in EHR Data? A
Case Study in Integrating Referent Tracking into
an Electronic Health Record Application. This
volume.

