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ABSTRACT 
Traditional database resources and Semantic Web technology 
face problems when there is a need to keep track of individuals 
in reality as these individuals undergo changes of various sorts. 
We describe an application which implements the Referent 
Tracking paradigm in which each real world entity has its own 
unique ID. The application is designed to be able to store 
relationships between tracked instances and also to be 
extendable to very high orders of magnitude (in principle to 
accept numbers of entries in the billions). Our approach is based 
on ontologies grounded in realism, but it can be extended also to 
information that is captured using the terminologies or concept-
based ontologies used in traditional knowledge representation 
systems. The repository uses RDF as representation format, and 
it can thus be queried with query languages such as SPARQL, 
SeRQL and RQL, thereby providing support for reasoning over 
multiple ontologies. 

Categories and Subject Descriptors 
H.3.5 [Information storage and retrieval] – Web-based 
services. 

General Terms 
Performance, Design, Reliability, Standardization, Languages, 
Theory 

Keywords 
Referent Tracking, Electronic Health Records, Ontology, RDF, 
Semantic Interoperability 

1. INTRODUCTION 
Electronic Health Record (EHR) systems are software systems 
that manage patient information that typically arises within a 
single health care institution. Such systems exist in various 
flavors and can be built up out of several different types of 
components and rely on different types of standards such as 
HL7 [16] or openEHR [3]. One particular component of a 
modern EHR deals with the access to terminologies and to 
coding and classification systems such as ICD-9-CM [39] or 
SNOMED-CT [35]. The purpose of using such systems is to 
avoid the ambiguities and interpretation problems that often 
arise when health professionals use local terminologies (or no 
terminologies at all) to enter statements in an EHR [30].  
Unfortunately, this goal has thus far been only partly achieved. 

Using terminological systems of the sorts referred to above, in 
which the terms are given an intended and (so it is claimed) 
unique meaning, may indeed, if the system is used properly, 
reduce but not eliminate the risk of misinterpretation by 
humans. But, certainly, existing EHRs do not contain enough 
information of the right sort to enable correct interpretation by 
software agents and thus to render different EHR systems 
semantically interoperable. 
Here ontologies came into play, for which in the course of time 
various representation languages have been developed, the most 
recent one being the Ontology Web Language (OWL) [34]. In 
addition, there are tools such as Protégé [13], SWOOP [19] and 
OBO-Edit [25] which have been used for building ontologies 
such as the Foundational Model of Anatomy (FMA) [11] and 
the Gene Ontology [37]. Reasoning with such ontologies can be 
done with tools such as Pellet [31], Racer [15] and FaCT [38]. 
Thus far, however, none of these tools, neither the ontologies 
developed, are used in operational EHR environments, and this 
for several reasons. Many representation tools allow only class-
level representations, while most current reasoners do not 
support reasoning over instances in ways that mirror the 
relationships between the instances in reality. These tools also 
typically fail when they are loaded with large amounts of 
instance data.  
In this paper, we describe a software system which implements 
Referent Tracking, a paradigm designed to solve the problems 
just sketched. The system is able to contain large amounts of 
data pertaining to real-world entities and their relationships in a 
way that is consistent with the view endorsed by philosophical 
realism. The system is designed to act as a backbone for other 
applications such as EHRs. It uses RDF as a representation 
language, can be queried by means of semantic query languages 
thereby providing support for reasoning over multiple 
ontologies. The software is developed in Java and is available as 
a standalone server application accessible through web services 
as well as a library which allows client applications to embed 
the system. 

2. REFERENT TRACKING 
2.1 Main Principles 
Referent Tracking (RT) is a paradigm that was introduced in 
2005 in the field of EHR systems and that is intended to avoid 
the ambiguities that arise when clinicians, when writing 
statements in an EHR, refer to entities on the side of the patients 
by means of generic terms [9]. RT does so by assigning globally 
unique IDs (called IUIs for: Instance Unique Identifiers) as 
explicit references to the real world entities (called particulars in 
the tradition of philosophical ontology) on the side of patients, 
including their body parts, diseases, therapies, and so forth.  
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Thus the information that is currently captured in the EHR 
analogous to sentences such as: “this patient has a left forearm 
fracture”, would need to be conveyed by means of descriptions 
such as “#IUI-5 is located in #IUI-4”, together with associated 
information to the effect that “IUI-4” refers to the patient under 
scrutiny, and “IUI-5” to a particular fracture in patient #IUI-4 
(and not to some similar left forearm fracture from which he 
suffered earlier). 
Information of this sort is stored in a Referent Tracking System 
(RTS). The purpose of an RTS is, as its name suggests, to keep 
track of referents which are entities that exist in the 
spatiotemporal world that surrounds us. In the context of an 
EHR, the referents are in the first place particulars such as John, 
John’s forearm, the specific fracture in John’s forearm, and so 
forth. These particulars are instances of universals such as 
person, forearm and fracture, which are represented in 
ontologies. The term universal is a philosophical term used to 
denote what is general in reality. Universals are represented in 
ontologies that adhere to the principles laid down in Basic 
Formal Ontology (BFO) [14] on which RT further builds, by 
means of classes, but with the additional constraint, in contrast 
to other approaches to ontology building, that classes only refer 
to universals. Therefore, an RTS must correspondingly also 
contain information relating particulars to classes, such as “IUI-
5 instance_of fracture” (where ‘fracture’ might be replaced by a 
unique identifier pointing to the class fracture in an ontology). 
Following the terminology defined in [33], a configuration of 
particulars and or universals is called a portion of reality (POR). 
In [7, 8] the conditions for assigning an IUI to a particular are 
described, as well as the templates according to which some 
PORs are to be represented in an RTS. The current set of 
templates is shown in Table 1. The templates are to be 
interpreted as an abstract syntax; it is left to the developers of an 
RTS to implement the specifications in the most optimal way 
given the constraints of the environment in which the system 
has to operate. 

2.2 Requirements 
Although an RTS can be used independently in a single setting, 
for instance within a single general practitioner’s surgery or 
within the context of a hospital, the paradigm’s real benefits will 
primarily emerge when it is used in a distributed, collaborative 
environment, for instance if an RTS is used as a central server to 
which many health institutes are connected. One and the same 
patient is often cared for by a variety of healthcare providers, 
many of them working in different settings, and each of these 
settings may use its own separate information system. These 
systems contain different data, but these data often provide 
information about the same particulars. Under the current state 
of affairs, it is very hard, if not impossible, to query these data 
in such a way that, for a given particular, all information 
available can be retrieved. With the right sort of distributed 
RTS, such retrieval becomes in very many cases a trivial matter. 
Therefore, an RTS should be able to: 

• run as a backbone for any EHR system whereby both 
EHR and RT systems should run independently; 

• run on any platform (Windows, Unix, Linux) while 
also the clients,  

• be independent of the programming environment in 
which they have been developed, 

Table 1 Abstract syntax and semantics of information 
templates in a referent tracking system 

Template Name Abstract Syntax RDFS class 
Description 

A-template Ai = < IUIp, IUIa, tap> ParticularRepresentation 
Captures the assignment of a IUI to a particular where  

• IUIp is the IUI of the particular in question,  
• IUIa is the IUI of the author of the assignment act, and  
• tap is a time-stamp indicating when the assignment was made. 

PtoP – template Ri = <IUIa, ta, r, o, P, tr> PtoP 
Description of a relationship between particulars, where 

• IUIa is the IUI of the author asserting that the relationship 
referred to by r holds between the particulars referred to by 
the IUIs listed in P,  

• ta  is a time-stamp indicating when the assertion was made, 
• r is the designation in o of the relationship obtaining between 

the particulars referred to in P,  
• �is the ID of the ontology from which r is taken, 
• P is an ordered list of IUIs referring to the particulars 

between which r obtains, and 
• tr is a time-stamp representing the time at which the 

relationship was observed to obtain. 
PtoU-template Ui = <IUIa, ta, inst, o, IUIp, u, tr> PtoU  
Description of an instantiation, where  

• IUIa is the IUI of the author asserting that IUIp inst u,  
• ta is a time-stamp indicating when the assertion was made, 
• inst is the designation in o of the relationship of instantiation, 
• o is the ID of the ontology from which inst and u are taken,  
• IUIp is the IUI referring to the particular whose inst 

relationship with u is asserted, 
• u is the designation of the class in o with which IUIp enjoys 

the inst relationship, and 
• tr is a time-stamp representing the time at which the 

relationship was observed to obtain. 
PtoCo-template Coi = <IUIa, ta, cbs, IUIp, co, tr> PtoCo 
Annotating a particular with a code from a concept-based system, where 

• IUIa is the IUI of the author asserting that terms associated to 
co may be used to describe p,  

• ta is a time-stamp indicating when the assertion was made, 
• cbs is the ID of the concept-based system from which co is 

taken, 
• IUIp is the IUI referring to the particular which the author 

associates with co, 
• co is the concept-code in the concept-system referred to by 

cbs which the author associates with IUIp, and 
• tr is a time-stamp representing a time at which the author 

considers the association appropriate 
PtoU--template U

i = <IUIa, ta, r, o, IUIp, u, tr> PtoLackU 
The particular referred to by IUIa asserts at time ta that the relation r of 
ontology o does not obtain at time tr between the particular referred to by 
IUIp and any of the instances of the class u at time tr

PtoN-template Ni=< IUIa, ta, ntj, ni, IUIp, tr> PtoN  
The particular referred to by IUIa asserts at time ta that ni is the name of 
the nametype ntj assigned to the particular referred to by IUIp at tr. 
Meta-template Di  = <IUId, Xi, td>  
Publication of a description of a portion of reality in the RTS where IUId 
is the IUI of the entity registering Xi in the system, Xi is the information-
unit in question (in the form of any other template above), and td is a 
reference to the time the registration was carried out. 
 

• work with multiple institutes as a single backbone; 
• have reasoning capabilities; 
• run in a secure box such that only authorized users can 

access the services of the RT system; 

• handle billions of records in a fast and efficient way. 



3. APPLIED TECHNOLOGIES 
3.1 Object-Oriented Programming and Java 
To satisfy the platform independence requirement, we 
implemented the RTS in the object-oriented programming 
language Java. In defining the classes and the objects that would 
be created during their execution, we maintained as far as 
possible the same principles as dictated by BFO. We took 
maximal advantage of the Java interface paradigm to design 
methods without fixed implementation. We also declared many 
classes to be abstract such that they don’t need to supply 
specific implementations of each method that they contain. This 
is useful for providing implementations that are general enough 
to apply to most anticipated extensions of such a class.  

3.2 Resource Description Framework 
In a statement such as “John (#IUI-1) has a fracture (#IUI-6) in 
his left forearm (#IUI-3)” the IUIs form the nodes in a graph 
whereas the relations between the particulars denoted by the 
IUIs such as #IUI-3 part_of #IUI-1 and #IUI-6 depends_on 
#IUI-3, form the edges in the graph. Therefore, the Resource 
Description Framework (RDF) [21] can be used as a 
representation language.  
RDF is based on the idea that the entities (also called resources) 
being described have properties which have values. An RDF 
statement can be represented as a directed graph, where the 
subject and objects are nodes and the predicate is a directed arc 
pointing from the subject to the object.  For example, an 
assertion that the particular rts:IUI-1 was seen (rts:iuia) by the 
physician rts:IUI-1 and that the creation time (rts:tap) is 
01/12/2006 can be represented by two RDF statements as shown 
in Figure 1. In RDF, eclipse shapes are used to represent 
resources and the rectangular shapes represent atomic values. 
Our RDF representations of the RT templates are treated as 
resources themselves: each resource is therefore prefixed with 
the RTS name space URI, i.e http://org.buffalo.edu/RTS#. We 
are using the label prefix rts: for the RTS namespace such that 
for instance the resource rts:IUI-1 is the same as 
http://org.buffalo.edu/RTS#IUI-1. 
 

 
Figure 1: RDF graph representation 

 
An assertion to the effect that particular #IUI-1 has name John 
can be represented in RDF as shown in Figure 2 by means of 
three resources: two first order resources for the particulars 
rts:IUI-1 and rts:IUI-10, and one second order resource for the 
PtoN template (rts:pton_2). The RDF triple (rts:pton_2 rts:iuip 
rts:IUI-1) in the RTS denotes that the PtoN template resource 
rts:pton_2 associates the name John to the particular rts:IUI-1.  
The RDF framework provides a simple and elegant way for 
describing properties for resources. However, it does not 

provide any mechanism to declare properties for resources. 
Therefore, RFDS, an extension of RDF, has been proposed by 
W3C for declaring classes and their properties and relations. We 
have mapped the RT templates to RDFS classes, thereby 
ensuring that the class names are identical to the template 
names, with the exception of PtoU-, which, because of 
restrictions in the RDFS naming conventions, has been mapped 
to PtoLackU.  
 

 
Figure 2: RDF graph for rts:IUI-1 has name John 

 
We have defined the RT URI ‘rts:type//terminologysystemid/ 
termid’ for the external resources denoting universals, concepts 
and relations. The RT URI starts with the rts: prefix and the 
type part represents whether this URI represents a universal, a 
concept, or a relation. The possible values for type are u for 
universal, cbs for concept code and r for a relation. For example 
the URI rts:u//FMA/Left+forearm denotes the FMA 
representation for the universal Left forearm and the URI 
rts:r//FMA/part the FMA’s part relation. 
 

 
Figure 3: RDF representation for the particular John has 

has_part relation with his Left forearm 
 
Figure 3, an extension of Figure 2, shows that particular rts:IUI-
1 has the name John and that John enjoys the has_part relation 
(taken from the OBO_REL ontology [32] with particular 
rts:IUI-3 (the particular rts:IUI-3 is an instantiation of the FMA 
class Left forearm). The figure contains resources with property 
rdf:type indicating of what class these resources are instances, 
as well as resources for which no RDFS class has been defined. 
In the figure, the rts:iuip property of rts:ptop_5 resource (a 
particular PtoP instantiation) tells us that the particular rts:IUI-1 
is the subject of the relation has_part whereas the particular 
rts:IUI-3, as indicated by convention by the property rts:p is the 

http://org.buffalo.edu/RTS
http://org.buffalo.edu/RTS#IUI-1


object; thus :IUI-1 (John) has_part rts:IUI-3 (instance of the Left 
forearm). 

4. RTS ARCHITECTURE 
We have designed the RTS as a server application as well as a 
Java library. All materials to do so are downloadable from 
Sourceforge under an open source license [22]. 
The architecture of the application is shown in Figure 4. Clients 
can connect with the system via a server interface based on web 
services or via the RT Access API interface, which is the kernel 
of the system. The web services forward the clients’ requests to 
the RT Access API which is responsible for data validation and 
management. All data serialization and retrieval activities are 
performed in the Data Access Layer. The reasoning component 
sends all the reasoning queries (requested by Data Access API 
or RT Access API) to external ontology or terminology systems 
for query execution.  

 
Figure 4: RTS Architecture 

 

4.1 RTS Web Services 
Web services are remote procedures hosted at an http server 
which are invoked through SOAP messages [23] which contain 
the procedure information (procedure name, parameters and 
return type) and port type (location of the procedure). The RTS 
uses Axis for Java [36] to host the web services thereby taking 
advantage of the native support of the Web Services Definition 
Language (WSDL) [10] that Axis provides. Both WSDL and 
SOAP are platform independent so that the RT interface 
becomes accessible to all programming platforms and 
environments.  
The RTS web services allow both retrieval and insertion of the 
RT templates in the RTS. They run over the http protocol [4] 
which is stateless in nature: both client and server forget each 
other after processing a request. However, in the RTS, it is 
required that the server remembers the clients since 
authentication and other safety and security principles require 
users to remain logged-in until no data have anymore to be 
entered or retrieved. To achieve this behaviour, we have used 
the session oriented communication paradigm [20]. A session 
represents a logical connection of a client with the server and is 
created by the server upon the successful login of the client. The 
session is expired only if the client logs out from the system or 
if a timeout occurs. A session is uniquely identified by means of 
a unique session ID which is generated when the session is 
created. The client uses this session ID for any further 
communication in the context of the session. 

4.2 RT Access API 
All the functionalities that the RTS is able to provide to clients 
are implemented in the API module. The Webservices 
component forwards all requests to this API for execution.  As 
an alternative, Java clients can embed the RTS in their 
applications using this API. This API contains the modules 
RTRepository and RTVisGraph. 

4.2.1 RTRepository 
The RTS has been build to be independent of any data source 
technology. To achieve this goal, we have defined the 
RTRepository class as an abstract Java class. This class provides 
all necessary services for managing the data based on the 
principles defined in the RT paradigm. To manage the RT data 
in a specific data source technology, an extension of the 
RTRepository for that specific technology is required. We have 
decided to develop the RTRepositorySesameImp class by 
extending the RTRepository such that it targets the SAIL 
Sesame API for manipulating RDF graphs as a data source [6]. 
RTRepositorySesameImp works with the three data sources 
supported by Sesame: one contained in a RDBMS, another one 
in memory, and the third one being file-based. The RDBMS 
data source allows maintaining a large repository in the central 
server. The memory based repository is designed to maintain 
RT data for temporary and fast access purposes.  
At runtime an RTRepository instance is created by an instance 
of the RTRepositoryFactory class. The factory class 
construction helps in creating an instance of a specific 
implementation RTRepository without the need to change the 
RTS java code. It gets the repository implementation class 
information (currently RTRepositorySesameImp) from the RTS 
configuration file (a file maintains the different configurations 
of the RTS such as initialization parameters). This allows more 
implementations of the RTRepository to be plugged in.  
The RTRepository services use java objects in their arguments 
and returned results, and the java objects carry the information 
about the RT templates. An abstract view of the mapping of the 
RT data into java classes is shown in an UML diagram (Figure 
5). The RTRepository consists of the instances of the Resource 
interface where each resource has a unique id. There are two 
types of resources at this level: ParticularRepresentation and 
Relation. The name convention used in the java mapping is the 
same as discussed in the data representation section. 
 

 
Figure 5: RTRepository API abstract view 



The RTRepository class provides three types of services, i.e. 
insertion, retrieval and querying (with semantic query 
languages) of the RT data. 

Insertion services allow creating new RT template resources in 
the repository. The most basic service assigns a IUI to a real 
world entity and creates its representation in the RTS. The next 
step is to assign detail to this particular. For example, the code  

‘PtoU ptou = repository.createPtoU(particular.getIUI(), 
iuia,“instance_of”, “FMA”,  “Left forearm”, ta, tr);’ 

relates a particular created earlier to the Left forearm class of the 
FMA by means of the instance_of relation.  
Importantly, the RT paradigm does not allow any delete 
operation in order to be able to always return to a state of the 
database as it was at a certain time in history. To avoid mistakes 
in creating new template resources in the RTRepository, the 
resources are cached right after the create operation. The client 
can remove or modify resources from the cache as long as the 
commit service has not been called.  

The API retrieval methods help in searching the particulars in 
the RT repository. Particulars can be searched by means of the 
names associated with them, the ontology classes of which they 
are instances, or the creation and observation dates (Table 2). 
All arguments in the above services can be null, but not at the 
same time. Because the search pattern in the services might 
match with several thousands of particulars and the network 
bandwidth might not allow to transfer that many results to the 
clients, we have set the limit by default to return the first 200 
resources. What selection will be returned depends on the data 
source technology. However, the limit can be changed in the 
RTS configuration file. 
In RTRepository, particulars are connected to each other via 
relations such as the. has_part relation between John (#IUI-1) 
and his Left forearm (#IUI-3. We have exploited these relations 
for retrieval as well and designed services to search particulars 
by means of the relations through which they are connected. 

4.2.2 Querying the RTS using SPARQL 
Because the RT data are expressed in RDF, RDF query 
languages such as RQL [12], SPARQL [27] and SeRQL [6]. can 
be used for retrieval. To this end, the RTRepository comes with 
the service ‘repository.query(querystring, language)’ which has 
an argument for the query string and a second one for the name 
of the query language in which the first argument is expressed. 
The SeRQL query language is implemented with the help of the 
Sesame SeRQL query language module, and the SPARQL 
query language is implemented with the help of the ARQ query 
module (a SPARQL processor for Jena) [29]. Because the RTS 
repository is built over the Sesame RDFRepository, the 
interoperability between the Sesame RDFRepository and Jena is 
done by means of a modified version of the Jena Sesame 
Module. The RQL query language is supported by Sesame 
SAIL but this has thus far not been tested within the context of 
the RTS. We will limit our discussion here to SPARQL.  
SPARQL works with query triples that look very similar to RDF 
triples, but that may contain variables instead of constants for 
subject, predicate or object. For example, the query SELECT ?r 
WHERE{?r rts:iuip <rts:IUI-3>.} has two clauses: SELECT 
and WHERE. The SELECT clause contains the variable 
declaration, and the WHERE clause contains the query search 
patterns. Because the variable is placed in subject position, the 

query returns the list of subjects from matching triples. The 
pattern at line 3 of the query (no restriction for the subject) 
matches the one triple at line 6 in Listing 1. The returned result 
is “rts:ptop_1”, i.e. the URI of the matching resource. 
Listing 1 enumerates the triples involved in representing that 
#IUI-3 (John’s left forearm) is part of #IUI-1 (John). 
 

Table 2: The RTRepository retrieval services to search 
particulars by means of their associated detail 

Service Name Service Description 

getParticulars
WithPtoN 
(iuip, nt, n, 
iuia, taRange, 
tdRange) 

This service retrieves the particulars and the 
associated PtoN templates.  The query 
‘getParticularsWithPtoN (null, “name”, “John”, null, 
null, null)’ (which particulars have the name John) 
will for the data shown in Figure 2 retrieve the 
resources rts:pton_2 and rts:IUI-3. 

getParticulars
WithPtoCo 
(iuip, co, iuia, 
taRange, 
tdRange) 

This service retrieves the particulars and the 
associated PtoCo templates.   The query 
‘getParticularsWithPtoCo (null, “rts:co//SNOMED-
CT/91419009”, null, null, null)’ retrieves the 
particulars annotated with the SNOMED-CT code 
‘91419009’, which is a code for Left forearm fracture. 

getParticulars
WithPtoU 
(iuip, u, iuia, 
taRange, 
tdRange) 

This service retrieves the particulars which are 
instances of the universal u.  The query 
‘getParticularsWithPtoU (null, 
“rts:u//FMA/Forearm”, null, null, null)’ retrieves the 
instances of the FMA class denoting the universal 
Forearm. 

getParticulars
WithPtoLackU 
(iuip, u, iuia, 
taRange, 
tdRange) 

This service retrieves the particulars which do not 
stand in any lacks relation to the universal u. 

 
Listing 1: Triple View of the RDF 

1. rts:IUI-1     rdf:type  rts:Particular 
2. rts:IUI-1     rdf:tap    “28/08/2006” 
3. rts:IUI-3     rdf:type  rts:Particular 
4. rts:IUI-3     rdf:tap   “28/08/2006” 
5. rts:ptop_5  rdf:type  rts:PtoP 
6. rts:ptop_5  rts:iuip   rts:IUI-3 
7. rts:ptop_5  rts:p       rts:IUI-4 
8. rts:ptop_5  rts:r        rts:r//OBO_REL/has_part 
9. rts:ptou_5  rdf:type  rts:PtoU 
10. rts:ptou_5  rts:iuip   rts:IUI-4 
11. rts:ptou_5  rts:u      rts:t//FMA/Left+forearm 
12. rts:ptou_5  rts:ta     “28/08/2006” 
13. rts:ptou_5  rts:tr     “28/08/2006” 

 
The query  
1  SELECT ?ptou 
2  WHERE{ 
3   ?ptou rts:u rts:t//FMA/Left+forearm. 
4  } 

 
requests the resources (PtoU templates) which are related to the 
universal Left forearm. 



In SPARQL more complex queries can be built by adding more 
triple pattern restrictions. For example, the query  
1  SELECT ?ptou ?p ?ptop 
2  WHERE{ 
3   ?ptop rts:iuip  <rts:IUI-3>. 
4   ?ptop rts:r       rts:r//OBO_REL/has_part 
5   ?ptop rts:p      ?p . 
6  ?ptou rts:iuip   ?p . 
7   ?ptou rts:u       rts:t//FMA/Left+forearm. 
8  } 

 
requests the particulars that are instances of Left forearm and a 
part of particular rts:IUI-1. The RTRepository executes the 
queries, whether in SPARQL or another supported query 
language, in two steps. In the first step, it passes the query to the 
corresponding query engine (described further down) which 
upon execution returns the results. The results are the URI for 
the RT templates resources. The repository, in the second step, 
then queries the Data Access API (described further down) to 
retrieve all the attributes of the returned resources URI. 
Of course, users of EHR systems are not expected to query the 
RTRepository directly through RDF query languages. Rather, 
these queries should be generated on the basis of the graphical 
user interfaces provided by the EHR systems. Making that 
happen is part of the work to be conducted when interfacing an 
EHR with the RTS.  

4.2.3 RTVisGraph 
This component is an extension of the JGraph java library for 
displaying graphs [18] which has the ability to generate images 
in Jpeg and SVG. The component can be used for interactive 
query expansion using the query services just described.  A 
search for any fracture on John’s forearm for instance can be 
executed in three steps In the first step, John (rts:IUI-1) is 
searched. In the second step, the graph is expanded for the 
related particulars, in this case rts:IUI-3 (Left forearm). Finally 
the graph expands further from rts:IUI-3 by retrieving the 
related particulars which are annotated by concept codes, in this 
case rts:IUI-6 (annotated by SNOMED fracture code).   

4.3 RT Data Access API 
This is the low level data access API which provides persistence 
services for the RT repository. It provides an abstract view of 
the data source to RTRepositorySesameImp. This layer utilizes 
currently the services of SAIL to store and retrieve RDF graphs, 
while the Jena API [17] for RDF manipulation which does the 
same job as SAIL might be another choice. SAIL comes with a 
RDFRepository java interface, which represents a logical data 
repository for RDF graphs. 
As a further improvement, rather than using the 
implementations of the SAIL API directly, we have written the 
RDFRepositoryWrapper (Figure 6) over the implementations of 
SAIL. The purpose of the wrapper is to call under certain 
circumstances the reasoning services described below. 
Finally, because the Sesame default implementation for 
RDBMS is efficient during retrieval, but slow during insertions 
in large repositories, we have implemented an RDFRepository 
interface for the RTS native database so called 
RDFRepositoryForNative which is more efficient than the 
Sesame default implementations for both retrieval and insertion.  

 
Figure 6: RDFRepository Implementations 

4.4 Reasoning API 
Reasoning is a core part of the RTS and its purpose is double: 
first to avoid inconsistent data to be entered, and second to draw 
inferences during the execution of the search queries using the 
generic knowledge expressed in the ontologies used to annotate 
the data and by exploiting the reasoners that operate on them. 
Various reasoners exist; some being specific to a particular 
ontology such as the OQAFMA reasoner of the FMA [24], some 
coming with a DIG interface [1] for description logic 
representations while others use directly OWL-DL. 
In order to be able to deal with ontologies of various sorts and 
their associated reasoners, we developed the Reasoning API 
which helps in sending reasoning queries uniformly to different 
ontology systems. The API has an abstract class so called 
OntologyConnector which provides an interface to the external 
ontology systems. The OntologyConnector interface services (as 
shown in Table 3) are designed based on the principles defined 
in the OBO Relation Ontology [32] and Basic Formal Ontology 
[14]. The interpretations of the OntologyConnector services are 
specific to a particular ontology system; therefore, a separate 
implementation of the OntologyConnector is required for each 
ontology which is used to annotate the particulars in the RTS. 
Currently, we have only implemented an extension of the 
OntologyConnector for the FMA ontology, because this is the 
only one thus far that has a broad coverage and is built on sound 
ontological principles. Later we will add implementations for 
OWL based ontologies. 
The execution time of the OntologyConnector services can 
range from milliseconds to minutes, depending on the query 
execution time in the external ontology system. To handle this 
issue, the OntologyConnector is caching the results returned 
from these systems. The cache is stored in a RDBMS. During 
the execution of any of the OntologyConnector services, it first 
searches in the cache.  
Reasoning is performed for any query which involves PtoU 
templates. If, for example, the query 

getParticularsWithPtoPByPtoU(rts:IUI-
1,rts:r//OBO_REL/has_part,rts:u//FMA/ Forearm) 

is executed over the data of Figure 3, then first all particulars 
which are related to the particular rts:IUI-1 via the has_part 
relation are retrieved; in this case rts:IUI-3. Then it retrieves the 
universals which annotate rts:IUI-3 by retrieving the rts:potu_4 
resource. Finally it requests the ontologies in which the 
universals are represented by calling the isSubsumbedBy(“Left 
forearm”, “Forearm”) service from the OntologyConnector 
instance of the specialized class implemented for the FMA 
ontology. If subsumption can be applied, then it returns the 
resulting particulars with their associated templates. 



5. RESULTS 
To check the performance and stability of the RTS, we have 
tested the system by running the search queries over various 
database sizes up to 1.3 million RT templates. To that end, we 
developed a DataGenerator module which generates data on the 
basis of two sorts of XML files. Files of one sort contain lists of 
patients’ names. Files of the other sort (term list file) contain 
lists of body part universals from the FMA ontology including 
an ICD9 code to indicate a possible pathology associated with 
that body part. The DataGenerator tool first generates the 
patient particulars by parsing the patient names list and then for 
each patient it generates randomly a number of body parts 
particulars and disease particulars associated with the body parts 
by parsing the term list configuration file. The result is that for 
each patient a random number of body parts were declared to be 
instances of universals that are represented in the FMA and 
associated with the respective patients by means of the has-part 
relation as defined in the OBO-Relation ontology [32]. To each 
body part, we associated a disease via the depends-on relation. 
The disease particulars are annotated with ICD9 codes.  
To test the retrieval capabilities of the RTS, we randomly 
picked three patients from the database. The first was related to 
22 particulars, the second to 46 and the third with 74. The test 
case contained 16 queries which ran over the three patients. 
Each query involved a combination of the services as 
getParticularsWithPtoN, getParticularsWithPtoPByPtoCo and 
getParticularsWithPtoPByPtoU. All tests were run on the same 
machine with an Intel Core 2 duo E6400 processor, Windows 
XP as operating system, 1 GB RAM and the My SQL database 
5.1. Table 4 compares the retrieval times in milliseconds for 
RDFRepositoryRTNativeImp (RT native RDBMS RDF 
repository) and RDFRepository (Sesame RDF repository for 
RDBMS) obtained by averaging the results of 16 tests. The 
retrieval time increases as the database size increases, but not at 
the same rate. 

6. CONCLUSION & FUTURE WORK 
In this paper, we have described a first prototype of a Referent 
Tracking System which is able to maintain a large pool of data 
about particulars and their relations based on the Referent 
Tracking paradigm. The system is implemented to serve as a 
back-bone for EHR applications either in a client server setting 
by means of web services or embedded in the EHR applications 
themselves.  
The system maintains references to particulars and their 
relationships under the form of a RDF graph together with the 
information concerning which universals the particulars 
instantiate and the concept codes from the coding systems to 
which they are associated. By resorting to Basic Formal 
Ontology and the OBO Relation Ontology, and because of the 
referential semantics provided by the Referent Tracking 
paradigm, the data in the graph mirror the structure of reality. 
This set up paves the way to make machines understand EHR 
data unambiguously and is, we believe, an important 
contribution in reaching semantic interoperability. The 
prototype is a first, though important, step towards deployment 
but much more work is required. Because EHR systems run 
under strict safety, security and confidentiality regulations, the 
RTS must follow the same principles.  To protect the RTS 
against unauthorized access, we have a security module which is 
currently in an early stage of development. Thus far, the module 
only verifies a client on the basis of the user’s user-name and 

password. Encryption and transaction certification [28] will be 
dealt with later as well as improved access control concerning 
which parts of the graph are allowed to be accessed by a 
particular user. Also further comparison of its components with 
other available tools that have similar objectives is required, e.g. 
Instance store which is capable of maintaining a large pool of 
instances [2]. It is however restricted to OWL-DL based 
reasoning over classes and does not provide any mechanism to 
search for instances based on their relations. Other applications 
providing reasoning over instances are [5, 26]. 
 

Table 3: OntologyConnector class services 

Service Name Service Description 

isUniversalExist(u): This service checks whether a universal 
u exists in the ontology system. 

isUniversalSubType 
(u1, u2) 

This service checks whether the 
universal u1 is a subtype of universal 
u2. 

isRelationExistBetw
eenUniversals (r, u1, 
u2): 

This service checks whether the relation 
(r) exists between universals u1 and u2. 

isUniversalSubsume
dBy(u1, u2) 

This service checks whether the 
universal u1 is subsumed by universal 
u2 

getRelations(u1, u2) This service returns the list of the 
relations that exist between two 
univerals u1 and u2. 

 
 

Table 4  Comparison between the RTS native and Sesame 
RDBMS persistence for the query execution performance by 

evaluating the query set different data sizes of the 
RTRepository. 

  Query set execution time in 
milliseconds. 

# of RT 
Templates 

# of 
Particulars 

in the RTS 
native 

persistence 

in the Sesame 
native 

persistence 
162552 51706 195 214 
350075 111300 200 230 
540430 171818 214 237 
788143 250663 219 250 

1279908 406360 477 600 
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