
A Referent Tracking System for the Semantic Web
Shahid Manzoor

CoE/Bioinformatics & Life Sciences
701 Ellicott Street

Buffalo, NY - 14203
(1) 716 881 8975

smanzoor@buffalo.edu

Werner Ceusters
CoE/Bioinformatics & Life Sciences

701 Ellicott Street
Buffalo, NY - 14203
(1) 716 881 8971

ceusters@buffalo.edu

Ron Rudnicki
CoE/Bioinformatics & Life Sciences

701 Ellicott Street
Buffalo, NY - 14203
(1) 716 881 8981

rjr9@buffalo.edu

ABSTRACT
Traditional database resources and Semantic Web technology
face problems when there is a need to keep track of individuals
in reality as these individuals undergo changes of various sorts.
We describe an application which implements the Referent
Tracking paradigm in which each real world entity has its own
unique ID. The application is designed to be able to store
relationships between tracked instances and also to be
extendable to very high orders of magnitude (in principle to
accept numbers of entries in the billions). Our approach is based
on ontologies grounded in realism, but it can be extended also to
information that is captured using the terminologies or concept-
based ontologies used in traditional knowledge representation
systems. The repository uses RDF as representation format, and
it can thus be queried with query languages such as SPARQL,
SeRQL and RQL, thereby providing support for reasoning over
multiple ontologies.

Categories and Subject Descriptors
H.3.5 [Information storage and retrieval] – Web-based
services.

General Terms
Performance, Design, Reliability, Standardization, Languages,
Theory

Keywords
Referent Tracking, Electronic Health Records, Ontology, RDF,
Semantic Interoperability

1. INTRODUCTION
Electronic Health Record (EHR) systems are software systems
that manage patient information that typically arises within a
single health care institution. Such systems exist in various
flavors and can be built up out of several different types of
components and rely on different types of standards such as
HL7 [16] or openEHR [3]. One particular component of a
modern EHR deals with the access to terminologies and to
coding and classification systems such as ICD-9-CM [39] or
SNOMED-CT [35]. The purpose of using such systems is to
avoid the ambiguities and interpretation problems that often
arise when health professionals use local terminologies (or no
terminologies at all) to enter statements in an EHR [30].
Unfortunately, this goal has thus far been only partly achieved.

Using terminological systems of the sorts referred to above, in
which the terms are given an intended and (so it is claimed)
unique meaning, may indeed, if the system is used properly,
reduce but not eliminate the risk of misinterpretation by
humans. But, certainly, existing EHRs do not contain enough
information of the right sort to enable correct interpretation by
software agents and thus to render different EHR systems
semantically interoperable.
Here ontologies came into play, for which in the course of time
various representation languages have been developed, the most
recent one being the Ontology Web Language (OWL) [34]. In
addition, there are tools such as Protégé [13], SWOOP [19] and
OBO-Edit [25] which have been used for building ontologies
such as the Foundational Model of Anatomy (FMA) [11] and
the Gene Ontology [37]. Reasoning with such ontologies can be
done with tools such as Pellet [31], Racer [15] and FaCT [38].
Thus far, however, none of these tools, neither the ontologies
developed, are used in operational EHR environments, and this
for several reasons. Many representation tools allow only class-
level representations, while most current reasoners do not
support reasoning over instances in ways that mirror the
relationships between the instances in reality. These tools also
typically fail when they are loaded with large amounts of
instance data.
In this paper, we describe a software system which implements
Referent Tracking, a paradigm designed to solve the problems
just sketched. The system is able to contain large amounts of
data pertaining to real-world entities and their relationships in a
way that is consistent with the view endorsed by philosophical
realism. The system is designed to act as a backbone for other
applications such as EHRs. It uses RDF as a representation
language, can be queried by means of semantic query languages
thereby providing support for reasoning over multiple
ontologies. The software is developed in Java and is available as
a standalone server application accessible through web services
as well as a library which allows client applications to embed
the system.

2. REFERENT TRACKING
2.1 Main Principles
Referent Tracking (RT) is a paradigm that was introduced in
2005 in the field of EHR systems and that is intended to avoid
the ambiguities that arise when clinicians, when writing
statements in an EHR, refer to entities on the side of the patients
by means of generic terms [9]. RT does so by assigning globally
unique IDs (called IUIs for: Instance Unique Identifiers) as
explicit references to the real world entities (called particulars in
the tradition of philosophical ontology) on the side of patients,
including their body parts, diseases, therapies, and so forth.

Copyright is held by the authors.

Thus the information that is currently captured in the EHR
analogous to sentences such as: “this patient has a left forearm
fracture”, would need to be conveyed by means of descriptions
such as “#IUI-5 is located in #IUI-4”, together with associated
information to the effect that “IUI-4” refers to the patient under
scrutiny, and “IUI-5” to a particular fracture in patient #IUI-4
(and not to some similar left forearm fracture from which he
suffered earlier).
Information of this sort is stored in a Referent Tracking System
(RTS). The purpose of an RTS is, as its name suggests, to keep
track of referents which are entities that exist in the
spatiotemporal world that surrounds us. In the context of an
EHR, the referents are in the first place particulars such as John,
John’s forearm, the specific fracture in John’s forearm, and so
forth. These particulars are instances of universals such as
person, forearm and fracture, which are represented in
ontologies. The term universal is a philosophical term used to
denote what is general in reality. Universals are represented in
ontologies that adhere to the principles laid down in Basic
Formal Ontology (BFO) [14] on which RT further builds, by
means of classes, but with the additional constraint, in contrast
to other approaches to ontology building, that classes only refer
to universals. Therefore, an RTS must correspondingly also
contain information relating particulars to classes, such as “IUI-
5 instance_of fracture” (where ‘fracture’ might be replaced by a
unique identifier pointing to the class fracture in an ontology).
Following the terminology defined in [33], a configuration of
particulars and or universals is called a portion of reality (POR).
In [7, 8] the conditions for assigning an IUI to a particular are
described, as well as the templates according to which some
PORs are to be represented in an RTS. The current set of
templates is shown in Table 1. The templates are to be
interpreted as an abstract syntax; it is left to the developers of an
RTS to implement the specifications in the most optimal way
given the constraints of the environment in which the system
has to operate.

2.2 Requirements
Although an RTS can be used independently in a single setting,
for instance within a single general practitioner’s surgery or
within the context of a hospital, the paradigm’s real benefits will
primarily emerge when it is used in a distributed, collaborative
environment, for instance if an RTS is used as a central server to
which many health institutes are connected. One and the same
patient is often cared for by a variety of healthcare providers,
many of them working in different settings, and each of these
settings may use its own separate information system. These
systems contain different data, but these data often provide
information about the same particulars. Under the current state
of affairs, it is very hard, if not impossible, to query these data
in such a way that, for a given particular, all information
available can be retrieved. With the right sort of distributed
RTS, such retrieval becomes in very many cases a trivial matter.
Therefore, an RTS should be able to:

• run as a backbone for any EHR system whereby both
EHR and RT systems should run independently;

• run on any platform (Windows, Unix, Linux) while
also the clients,

• be independent of the programming environment in
which they have been developed,

Table 1 Abstract syntax and semantics of information
templates in a referent tracking system

Template Name Abstract Syntax RDFS class
Description

A-template Ai = < IUIp, IUIa, tap> ParticularRepresentation
Captures the assignment of a IUI to a particular where

• IUIp is the IUI of the particular in question,
• IUIa is the IUI of the author of the assignment act, and
• tap is a time-stamp indicating when the assignment was made.

PtoP – template Ri = <IUIa, ta, r, o, P, tr> PtoP
Description of a relationship between particulars, where

• IUIa is the IUI of the author asserting that the relationship
referred to by r holds between the particulars referred to by
the IUIs listed in P,

• ta is a time-stamp indicating when the assertion was made,
• r is the designation in o of the relationship obtaining between

the particulars referred to in P,
• �is the ID of the ontology from which r is taken,
• P is an ordered list of IUIs referring to the particulars

between which r obtains, and
• tr is a time-stamp representing the time at which the

relationship was observed to obtain.
PtoU-template Ui = <IUIa, ta, inst, o, IUIp, u, tr> PtoU
Description of an instantiation, where

• IUIa is the IUI of the author asserting that IUIp inst u,
• ta is a time-stamp indicating when the assertion was made,
• inst is the designation in o of the relationship of instantiation,
• o is the ID of the ontology from which inst and u are taken,
• IUIp is the IUI referring to the particular whose inst

relationship with u is asserted,
• u is the designation of the class in o with which IUIp enjoys

the inst relationship, and
• tr is a time-stamp representing the time at which the

relationship was observed to obtain.
PtoCo-template Coi = <IUIa, ta, cbs, IUIp, co, tr> PtoCo
Annotating a particular with a code from a concept-based system, where

• IUIa is the IUI of the author asserting that terms associated to
co may be used to describe p,

• ta is a time-stamp indicating when the assertion was made,
• cbs is the ID of the concept-based system from which co is

taken,
• IUIp is the IUI referring to the particular which the author

associates with co,
• co is the concept-code in the concept-system referred to by

cbs which the author associates with IUIp, and
• tr is a time-stamp representing a time at which the author

considers the association appropriate
PtoU--template U

i = <IUIa, ta, r, o, IUIp, u, tr> PtoLackU
The particular referred to by IUIa asserts at time ta that the relation r of
ontology o does not obtain at time tr between the particular referred to by
IUIp and any of the instances of the class u at time tr

PtoN-template Ni=< IUIa, ta, ntj, ni, IUIp, tr> PtoN
The particular referred to by IUIa asserts at time ta that ni is the name of
the nametype ntj assigned to the particular referred to by IUIp at tr.
Meta-template Di = <IUId, Xi, td>
Publication of a description of a portion of reality in the RTS where IUId
is the IUI of the entity registering Xi in the system, Xi is the information-
unit in question (in the form of any other template above), and td is a
reference to the time the registration was carried out.

• work with multiple institutes as a single backbone;
• have reasoning capabilities;
• run in a secure box such that only authorized users can

access the services of the RT system;

• handle billions of records in a fast and efficient way.

3. APPLIED TECHNOLOGIES
3.1 Object-Oriented Programming and Java
To satisfy the platform independence requirement, we
implemented the RTS in the object-oriented programming
language Java. In defining the classes and the objects that would
be created during their execution, we maintained as far as
possible the same principles as dictated by BFO. We took
maximal advantage of the Java interface paradigm to design
methods without fixed implementation. We also declared many
classes to be abstract such that they don’t need to supply
specific implementations of each method that they contain. This
is useful for providing implementations that are general enough
to apply to most anticipated extensions of such a class.

3.2 Resource Description Framework
In a statement such as “John (#IUI-1) has a fracture (#IUI-6) in
his left forearm (#IUI-3)” the IUIs form the nodes in a graph
whereas the relations between the particulars denoted by the
IUIs such as #IUI-3 part_of #IUI-1 and #IUI-6 depends_on
#IUI-3, form the edges in the graph. Therefore, the Resource
Description Framework (RDF) [21] can be used as a
representation language.
RDF is based on the idea that the entities (also called resources)
being described have properties which have values. An RDF
statement can be represented as a directed graph, where the
subject and objects are nodes and the predicate is a directed arc
pointing from the subject to the object. For example, an
assertion that the particular rts:IUI-1 was seen (rts:iuia) by the
physician rts:IUI-1 and that the creation time (rts:tap) is
01/12/2006 can be represented by two RDF statements as shown
in Figure 1. In RDF, eclipse shapes are used to represent
resources and the rectangular shapes represent atomic values.
Our RDF representations of the RT templates are treated as
resources themselves: each resource is therefore prefixed with
the RTS name space URI, i.e http://org.buffalo.edu/RTS#. We
are using the label prefix rts: for the RTS namespace such that
for instance the resource rts:IUI-1 is the same as
http://org.buffalo.edu/RTS#IUI-1.

Figure 1: RDF graph representation

An assertion to the effect that particular #IUI-1 has name John
can be represented in RDF as shown in Figure 2 by means of
three resources: two first order resources for the particulars
rts:IUI-1 and rts:IUI-10, and one second order resource for the
PtoN template (rts:pton_2). The RDF triple (rts:pton_2 rts:iuip
rts:IUI-1) in the RTS denotes that the PtoN template resource
rts:pton_2 associates the name John to the particular rts:IUI-1.
The RDF framework provides a simple and elegant way for
describing properties for resources. However, it does not

provide any mechanism to declare properties for resources.
Therefore, RFDS, an extension of RDF, has been proposed by
W3C for declaring classes and their properties and relations. We
have mapped the RT templates to RDFS classes, thereby
ensuring that the class names are identical to the template
names, with the exception of PtoU-, which, because of
restrictions in the RDFS naming conventions, has been mapped
to PtoLackU.

Figure 2: RDF graph for rts:IUI-1 has name John

We have defined the RT URI ‘rts:type//terminologysystemid/
termid’ for the external resources denoting universals, concepts
and relations. The RT URI starts with the rts: prefix and the
type part represents whether this URI represents a universal, a
concept, or a relation. The possible values for type are u for
universal, cbs for concept code and r for a relation. For example
the URI rts:u//FMA/Left+forearm denotes the FMA
representation for the universal Left forearm and the URI
rts:r//FMA/part the FMA’s part relation.

Figure 3: RDF representation for the particular John has

has_part relation with his Left forearm

Figure 3, an extension of Figure 2, shows that particular rts:IUI-
1 has the name John and that John enjoys the has_part relation
(taken from the OBO_REL ontology [32] with particular
rts:IUI-3 (the particular rts:IUI-3 is an instantiation of the FMA
class Left forearm). The figure contains resources with property
rdf:type indicating of what class these resources are instances,
as well as resources for which no RDFS class has been defined.
In the figure, the rts:iuip property of rts:ptop_5 resource (a
particular PtoP instantiation) tells us that the particular rts:IUI-1
is the subject of the relation has_part whereas the particular
rts:IUI-3, as indicated by convention by the property rts:p is the

http://org.buffalo.edu/RTS
http://org.buffalo.edu/RTS#IUI-1

object; thus :IUI-1 (John) has_part rts:IUI-3 (instance of the Left
forearm).

4. RTS ARCHITECTURE
We have designed the RTS as a server application as well as a
Java library. All materials to do so are downloadable from
Sourceforge under an open source license [22].
The architecture of the application is shown in Figure 4. Clients
can connect with the system via a server interface based on web
services or via the RT Access API interface, which is the kernel
of the system. The web services forward the clients’ requests to
the RT Access API which is responsible for data validation and
management. All data serialization and retrieval activities are
performed in the Data Access Layer. The reasoning component
sends all the reasoning queries (requested by Data Access API
or RT Access API) to external ontology or terminology systems
for query execution.

Figure 4: RTS Architecture

4.1 RTS Web Services
Web services are remote procedures hosted at an http server
which are invoked through SOAP messages [23] which contain
the procedure information (procedure name, parameters and
return type) and port type (location of the procedure). The RTS
uses Axis for Java [36] to host the web services thereby taking
advantage of the native support of the Web Services Definition
Language (WSDL) [10] that Axis provides. Both WSDL and
SOAP are platform independent so that the RT interface
becomes accessible to all programming platforms and
environments.
The RTS web services allow both retrieval and insertion of the
RT templates in the RTS. They run over the http protocol [4]
which is stateless in nature: both client and server forget each
other after processing a request. However, in the RTS, it is
required that the server remembers the clients since
authentication and other safety and security principles require
users to remain logged-in until no data have anymore to be
entered or retrieved. To achieve this behaviour, we have used
the session oriented communication paradigm [20]. A session
represents a logical connection of a client with the server and is
created by the server upon the successful login of the client. The
session is expired only if the client logs out from the system or
if a timeout occurs. A session is uniquely identified by means of
a unique session ID which is generated when the session is
created. The client uses this session ID for any further
communication in the context of the session.

4.2 RT Access API
All the functionalities that the RTS is able to provide to clients
are implemented in the API module. The Webservices
component forwards all requests to this API for execution. As
an alternative, Java clients can embed the RTS in their
applications using this API. This API contains the modules
RTRepository and RTVisGraph.

4.2.1 RTRepository
The RTS has been build to be independent of any data source
technology. To achieve this goal, we have defined the
RTRepository class as an abstract Java class. This class provides
all necessary services for managing the data based on the
principles defined in the RT paradigm. To manage the RT data
in a specific data source technology, an extension of the
RTRepository for that specific technology is required. We have
decided to develop the RTRepositorySesameImp class by
extending the RTRepository such that it targets the SAIL
Sesame API for manipulating RDF graphs as a data source [6].
RTRepositorySesameImp works with the three data sources
supported by Sesame: one contained in a RDBMS, another one
in memory, and the third one being file-based. The RDBMS
data source allows maintaining a large repository in the central
server. The memory based repository is designed to maintain
RT data for temporary and fast access purposes.
At runtime an RTRepository instance is created by an instance
of the RTRepositoryFactory class. The factory class
construction helps in creating an instance of a specific
implementation RTRepository without the need to change the
RTS java code. It gets the repository implementation class
information (currently RTRepositorySesameImp) from the RTS
configuration file (a file maintains the different configurations
of the RTS such as initialization parameters). This allows more
implementations of the RTRepository to be plugged in.
The RTRepository services use java objects in their arguments
and returned results, and the java objects carry the information
about the RT templates. An abstract view of the mapping of the
RT data into java classes is shown in an UML diagram (Figure
5). The RTRepository consists of the instances of the Resource
interface where each resource has a unique id. There are two
types of resources at this level: ParticularRepresentation and
Relation. The name convention used in the java mapping is the
same as discussed in the data representation section.

Figure 5: RTRepository API abstract view

The RTRepository class provides three types of services, i.e.
insertion, retrieval and querying (with semantic query
languages) of the RT data.

Insertion services allow creating new RT template resources in
the repository. The most basic service assigns a IUI to a real
world entity and creates its representation in the RTS. The next
step is to assign detail to this particular. For example, the code

‘PtoU ptou = repository.createPtoU(particular.getIUI(),
iuia,“instance_of”, “FMA”, “Left forearm”, ta, tr);’

relates a particular created earlier to the Left forearm class of the
FMA by means of the instance_of relation.
Importantly, the RT paradigm does not allow any delete
operation in order to be able to always return to a state of the
database as it was at a certain time in history. To avoid mistakes
in creating new template resources in the RTRepository, the
resources are cached right after the create operation. The client
can remove or modify resources from the cache as long as the
commit service has not been called.

The API retrieval methods help in searching the particulars in
the RT repository. Particulars can be searched by means of the
names associated with them, the ontology classes of which they
are instances, or the creation and observation dates (Table 2).
All arguments in the above services can be null, but not at the
same time. Because the search pattern in the services might
match with several thousands of particulars and the network
bandwidth might not allow to transfer that many results to the
clients, we have set the limit by default to return the first 200
resources. What selection will be returned depends on the data
source technology. However, the limit can be changed in the
RTS configuration file.
In RTRepository, particulars are connected to each other via
relations such as the. has_part relation between John (#IUI-1)
and his Left forearm (#IUI-3. We have exploited these relations
for retrieval as well and designed services to search particulars
by means of the relations through which they are connected.

4.2.2 Querying the RTS using SPARQL
Because the RT data are expressed in RDF, RDF query
languages such as RQL [12], SPARQL [27] and SeRQL [6]. can
be used for retrieval. To this end, the RTRepository comes with
the service ‘repository.query(querystring, language)’ which has
an argument for the query string and a second one for the name
of the query language in which the first argument is expressed.
The SeRQL query language is implemented with the help of the
Sesame SeRQL query language module, and the SPARQL
query language is implemented with the help of the ARQ query
module (a SPARQL processor for Jena) [29]. Because the RTS
repository is built over the Sesame RDFRepository, the
interoperability between the Sesame RDFRepository and Jena is
done by means of a modified version of the Jena Sesame
Module. The RQL query language is supported by Sesame
SAIL but this has thus far not been tested within the context of
the RTS. We will limit our discussion here to SPARQL.
SPARQL works with query triples that look very similar to RDF
triples, but that may contain variables instead of constants for
subject, predicate or object. For example, the query SELECT ?r
WHERE{?r rts:iuip <rts:IUI-3>.} has two clauses: SELECT
and WHERE. The SELECT clause contains the variable
declaration, and the WHERE clause contains the query search
patterns. Because the variable is placed in subject position, the

query returns the list of subjects from matching triples. The
pattern at line 3 of the query (no restriction for the subject)
matches the one triple at line 6 in Listing 1. The returned result
is “rts:ptop_1”, i.e. the URI of the matching resource.
Listing 1 enumerates the triples involved in representing that
#IUI-3 (John’s left forearm) is part of #IUI-1 (John).

Table 2: The RTRepository retrieval services to search
particulars by means of their associated detail

Service Name Service Description

getParticulars
WithPtoN
(iuip, nt, n,
iuia, taRange,
tdRange)

This service retrieves the particulars and the
associated PtoN templates. The query
‘getParticularsWithPtoN (null, “name”, “John”, null,
null, null)’ (which particulars have the name John)
will for the data shown in Figure 2 retrieve the
resources rts:pton_2 and rts:IUI-3.

getParticulars
WithPtoCo
(iuip, co, iuia,
taRange,
tdRange)

This service retrieves the particulars and the
associated PtoCo templates. The query
‘getParticularsWithPtoCo (null, “rts:co//SNOMED-
CT/91419009”, null, null, null)’ retrieves the
particulars annotated with the SNOMED-CT code
‘91419009’, which is a code for Left forearm fracture.

getParticulars
WithPtoU
(iuip, u, iuia,
taRange,
tdRange)

This service retrieves the particulars which are
instances of the universal u. The query
‘getParticularsWithPtoU (null,
“rts:u//FMA/Forearm”, null, null, null)’ retrieves the
instances of the FMA class denoting the universal
Forearm.

getParticulars
WithPtoLackU
(iuip, u, iuia,
taRange,
tdRange)

This service retrieves the particulars which do not
stand in any lacks relation to the universal u.

Listing 1: Triple View of the RDF

1. rts:IUI-1 rdf:type rts:Particular
2. rts:IUI-1 rdf:tap “28/08/2006”
3. rts:IUI-3 rdf:type rts:Particular
4. rts:IUI-3 rdf:tap “28/08/2006”
5. rts:ptop_5 rdf:type rts:PtoP
6. rts:ptop_5 rts:iuip rts:IUI-3
7. rts:ptop_5 rts:p rts:IUI-4
8. rts:ptop_5 rts:r rts:r//OBO_REL/has_part
9. rts:ptou_5 rdf:type rts:PtoU
10. rts:ptou_5 rts:iuip rts:IUI-4
11. rts:ptou_5 rts:u rts:t//FMA/Left+forearm
12. rts:ptou_5 rts:ta “28/08/2006”
13. rts:ptou_5 rts:tr “28/08/2006”

The query
1 SELECT ?ptou
2 WHERE{
3 ?ptou rts:u rts:t//FMA/Left+forearm.
4 }

requests the resources (PtoU templates) which are related to the
universal Left forearm.

In SPARQL more complex queries can be built by adding more
triple pattern restrictions. For example, the query
1 SELECT ?ptou ?p ?ptop
2 WHERE{
3 ?ptop rts:iuip <rts:IUI-3>.
4 ?ptop rts:r rts:r//OBO_REL/has_part
5 ?ptop rts:p ?p .
6 ?ptou rts:iuip ?p .
7 ?ptou rts:u rts:t//FMA/Left+forearm.
8 }

requests the particulars that are instances of Left forearm and a
part of particular rts:IUI-1. The RTRepository executes the
queries, whether in SPARQL or another supported query
language, in two steps. In the first step, it passes the query to the
corresponding query engine (described further down) which
upon execution returns the results. The results are the URI for
the RT templates resources. The repository, in the second step,
then queries the Data Access API (described further down) to
retrieve all the attributes of the returned resources URI.
Of course, users of EHR systems are not expected to query the
RTRepository directly through RDF query languages. Rather,
these queries should be generated on the basis of the graphical
user interfaces provided by the EHR systems. Making that
happen is part of the work to be conducted when interfacing an
EHR with the RTS.

4.2.3 RTVisGraph
This component is an extension of the JGraph java library for
displaying graphs [18] which has the ability to generate images
in Jpeg and SVG. The component can be used for interactive
query expansion using the query services just described. A
search for any fracture on John’s forearm for instance can be
executed in three steps In the first step, John (rts:IUI-1) is
searched. In the second step, the graph is expanded for the
related particulars, in this case rts:IUI-3 (Left forearm). Finally
the graph expands further from rts:IUI-3 by retrieving the
related particulars which are annotated by concept codes, in this
case rts:IUI-6 (annotated by SNOMED fracture code).

4.3 RT Data Access API
This is the low level data access API which provides persistence
services for the RT repository. It provides an abstract view of
the data source to RTRepositorySesameImp. This layer utilizes
currently the services of SAIL to store and retrieve RDF graphs,
while the Jena API [17] for RDF manipulation which does the
same job as SAIL might be another choice. SAIL comes with a
RDFRepository java interface, which represents a logical data
repository for RDF graphs.
As a further improvement, rather than using the
implementations of the SAIL API directly, we have written the
RDFRepositoryWrapper (Figure 6) over the implementations of
SAIL. The purpose of the wrapper is to call under certain
circumstances the reasoning services described below.
Finally, because the Sesame default implementation for
RDBMS is efficient during retrieval, but slow during insertions
in large repositories, we have implemented an RDFRepository
interface for the RTS native database so called
RDFRepositoryForNative which is more efficient than the
Sesame default implementations for both retrieval and insertion.

Figure 6: RDFRepository Implementations

4.4 Reasoning API
Reasoning is a core part of the RTS and its purpose is double:
first to avoid inconsistent data to be entered, and second to draw
inferences during the execution of the search queries using the
generic knowledge expressed in the ontologies used to annotate
the data and by exploiting the reasoners that operate on them.
Various reasoners exist; some being specific to a particular
ontology such as the OQAFMA reasoner of the FMA [24], some
coming with a DIG interface [1] for description logic
representations while others use directly OWL-DL.
In order to be able to deal with ontologies of various sorts and
their associated reasoners, we developed the Reasoning API
which helps in sending reasoning queries uniformly to different
ontology systems. The API has an abstract class so called
OntologyConnector which provides an interface to the external
ontology systems. The OntologyConnector interface services (as
shown in Table 3) are designed based on the principles defined
in the OBO Relation Ontology [32] and Basic Formal Ontology
[14]. The interpretations of the OntologyConnector services are
specific to a particular ontology system; therefore, a separate
implementation of the OntologyConnector is required for each
ontology which is used to annotate the particulars in the RTS.
Currently, we have only implemented an extension of the
OntologyConnector for the FMA ontology, because this is the
only one thus far that has a broad coverage and is built on sound
ontological principles. Later we will add implementations for
OWL based ontologies.
The execution time of the OntologyConnector services can
range from milliseconds to minutes, depending on the query
execution time in the external ontology system. To handle this
issue, the OntologyConnector is caching the results returned
from these systems. The cache is stored in a RDBMS. During
the execution of any of the OntologyConnector services, it first
searches in the cache.
Reasoning is performed for any query which involves PtoU
templates. If, for example, the query

getParticularsWithPtoPByPtoU(rts:IUI-
1,rts:r//OBO_REL/has_part,rts:u//FMA/ Forearm)

is executed over the data of Figure 3, then first all particulars
which are related to the particular rts:IUI-1 via the has_part
relation are retrieved; in this case rts:IUI-3. Then it retrieves the
universals which annotate rts:IUI-3 by retrieving the rts:potu_4
resource. Finally it requests the ontologies in which the
universals are represented by calling the isSubsumbedBy(“Left
forearm”, “Forearm”) service from the OntologyConnector
instance of the specialized class implemented for the FMA
ontology. If subsumption can be applied, then it returns the
resulting particulars with their associated templates.

5. RESULTS
To check the performance and stability of the RTS, we have
tested the system by running the search queries over various
database sizes up to 1.3 million RT templates. To that end, we
developed a DataGenerator module which generates data on the
basis of two sorts of XML files. Files of one sort contain lists of
patients’ names. Files of the other sort (term list file) contain
lists of body part universals from the FMA ontology including
an ICD9 code to indicate a possible pathology associated with
that body part. The DataGenerator tool first generates the
patient particulars by parsing the patient names list and then for
each patient it generates randomly a number of body parts
particulars and disease particulars associated with the body parts
by parsing the term list configuration file. The result is that for
each patient a random number of body parts were declared to be
instances of universals that are represented in the FMA and
associated with the respective patients by means of the has-part
relation as defined in the OBO-Relation ontology [32]. To each
body part, we associated a disease via the depends-on relation.
The disease particulars are annotated with ICD9 codes.
To test the retrieval capabilities of the RTS, we randomly
picked three patients from the database. The first was related to
22 particulars, the second to 46 and the third with 74. The test
case contained 16 queries which ran over the three patients.
Each query involved a combination of the services as
getParticularsWithPtoN, getParticularsWithPtoPByPtoCo and
getParticularsWithPtoPByPtoU. All tests were run on the same
machine with an Intel Core 2 duo E6400 processor, Windows
XP as operating system, 1 GB RAM and the My SQL database
5.1. Table 4 compares the retrieval times in milliseconds for
RDFRepositoryRTNativeImp (RT native RDBMS RDF
repository) and RDFRepository (Sesame RDF repository for
RDBMS) obtained by averaging the results of 16 tests. The
retrieval time increases as the database size increases, but not at
the same rate.

6. CONCLUSION & FUTURE WORK
In this paper, we have described a first prototype of a Referent
Tracking System which is able to maintain a large pool of data
about particulars and their relations based on the Referent
Tracking paradigm. The system is implemented to serve as a
back-bone for EHR applications either in a client server setting
by means of web services or embedded in the EHR applications
themselves.
The system maintains references to particulars and their
relationships under the form of a RDF graph together with the
information concerning which universals the particulars
instantiate and the concept codes from the coding systems to
which they are associated. By resorting to Basic Formal
Ontology and the OBO Relation Ontology, and because of the
referential semantics provided by the Referent Tracking
paradigm, the data in the graph mirror the structure of reality.
This set up paves the way to make machines understand EHR
data unambiguously and is, we believe, an important
contribution in reaching semantic interoperability. The
prototype is a first, though important, step towards deployment
but much more work is required. Because EHR systems run
under strict safety, security and confidentiality regulations, the
RTS must follow the same principles. To protect the RTS
against unauthorized access, we have a security module which is
currently in an early stage of development. Thus far, the module
only verifies a client on the basis of the user’s user-name and

password. Encryption and transaction certification [28] will be
dealt with later as well as improved access control concerning
which parts of the graph are allowed to be accessed by a
particular user. Also further comparison of its components with
other available tools that have similar objectives is required, e.g.
Instance store which is capable of maintaining a large pool of
instances [2]. It is however restricted to OWL-DL based
reasoning over classes and does not provide any mechanism to
search for instances based on their relations. Other applications
providing reasoning over instances are [5, 26].

Table 3: OntologyConnector class services

Service Name Service Description

isUniversalExist(u): This service checks whether a universal
u exists in the ontology system.

isUniversalSubType
(u1, u2)

This service checks whether the
universal u1 is a subtype of universal
u2.

isRelationExistBetw
eenUniversals (r, u1,
u2):

This service checks whether the relation
(r) exists between universals u1 and u2.

isUniversalSubsume
dBy(u1, u2)

This service checks whether the
universal u1 is subsumed by universal
u2

getRelations(u1, u2) This service returns the list of the
relations that exist between two
univerals u1 and u2.

Table 4 Comparison between the RTS native and Sesame
RDBMS persistence for the query execution performance by

evaluating the query set different data sizes of the
RTRepository.

 Query set execution time in
milliseconds.

of RT
Templates

of
Particulars

in the RTS
native

persistence

in the Sesame
native

persistence
162552 51706 195 214
350075 111300 200 230
540430 171818 214 237
788143 250663 219 250

1279908 406360 477 600

7. REFERENCES
[1] Bechhofer, S., The DIG Description Logic Interface:

DIG/1.1. in Proceedings of DL2003 Workshop, (Room,
2003).

[2] Bechhofer, S., Horrocks, I. and Turi, D., The OWL
Instance Store: System Description. in Proceedings of the
20th International Conference on Automated Deduction,
(2005), Springer-Verlag.

[3] Blobel, B. Advanced EHR architectures--promises or
reality. Methods Inf Med, 45 (1). 95-101.

[4] Booth, D., Haas, H., McCabe, F., Newcomer, E.,
Champion, M., Ferris, C. and Orchard, D. Web Services
Architecture W3C Working Group Note, 2004.

[5] Borgida, A. and Brachman, R.J., Loading data into
description reasoners. in Proceedings of the 1993 ACM
SIGMOD international conference on Management of data,
(1993), 217-226.

[6] Broekstra, J., Kampman, A. and Harmelen, F.v. Sesame: A
Generic Architecture for Storing and Querying RDF and
RDF Schema. in Lecture Notes in Computer Science -
International Semantic Web Conference ISWC2002,
Springer, Heidelberg, 2002, 54-68.

[7] Ceusters, W., Elkin, P. and Smith, B. Referent Tracking:
The Problem of Negative Findings. in Hasman, A., Haux,
R., Lei, J.v.d., Clercq, E.D. and Roger-France, F. eds.
Studies in Health Technology and Informatics. Ubiquity:
Technologies for Better Health in Aging Societies -
Proceedings of MIE2006, IOS Press, Amsterdam, 2006,
741-746.

[8] Ceusters, W. and Smith, B. Strategies for Referent
Tracking in Electronic Health Records. Journal of
Biomedical Informatics, 39 (3). 362-378.

[9] Ceusters, W. and Smith, B., Tracking Referents in
Electronic Health Records. in Medical Informatics Europe,
(2005), 71-76.

[10] Christensen, E., Curbera, F., Meredith, G. and
Weerawarana, S. Web Services Description Language
(WSDL) 1.1 W3C Note, 2001.

[11] FMA™ University of Washington. FMA™ (Foundational
Model Anatomy Ontology), 2006.

[12] Foundation for Research and Technology – Hellas. The
RDF Query Language (RQL), 2003.

[13] Gennari, J., Musen, M.A., Fergerson, R.W., Grosso, W.E.,
Crubezy, M., Eriksson, H., Noy, N.F. and Tu., S.W. The
Evolution of Protégé: An Environment for Knowledge-
Based Systems Development. International Journal of
Human-Computer Studies, 58 (1). 89 -123.

[14] Grenon, P., Smith, B. and Goldberg, L. Biodynamic
Ontology: Applying BFO in the Biomedical Domain. in
Pisanelli, D.M. ed. Ontologies in Medicine, IOS Press,
Amsterdam, 2004, 20-38.

[15] Haarslev, V., Möller, R., Straeten, R.v.d. and Wessel, M.
Extended Query Facilities for Racer and an Application to
Software-Engineering Problems. in Proceedings of the
2004 International Workshop on Description Logics (DL-
2004), Whistler, BC, Canada, June 6-8 2004, 2004, 148-
157.

[16] Health Level Seven Inc. Health Level 7, 2007.

[17] HP Labs Semantic Web Research. Jena- A Semantic Web
Framework for Java, 2006.

[18] JGraph Ltd. JGraph java API, 2006.

[19] Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C. and
Hendler, J. Swoop: A ‘Web’ Ontology Editing Browser.
Journal of Web Semantics 4(2).

[20] Kristol, D. and Montulli, L. HTTP State Management
Mechanism, 1997.

[21] Manola, F. and Miller, E. RDF Primer, W3C
Recommendation, 2004.

[22] Manzoor, S. and Ceusters, W. Referent Tracking System,
2006.

[23] Mitra, N. SOAP Version 1.2 Part 0: Primer, W3C
Recommendation, 2003.

[24] Mork, P., Brinkley, J.F. and Rosseb, C. OQAFMA
Querying Agent for the Foundational Model of Anatomy: a
Prototype for Providing Flexible and Efficient Access to
Large Semantic Networks. Journal of Biomedical
Informatics, 36. 501-517.

[25] OBO-Edit Working Group. OBO-Edit: An Ontology
Editor, 2006.

[26] Parallel Understanding Systems Group. Large-Scale
Knowledge Representation: The PARKA Project, 1995.

[27] Prud'hommeaux, E. and Seaborne, A. SPARQL Query
Language for RDF W3C Working Draft, 2006.

[28] R. Housley, W. Polk, W. Ford and Solo, D. Internet X.509
Public Key Infrastructure, 2002.

[29] RDF Data Access Working Group. ARQ - A SPARQL
Processor for Jena, 2007.

[30] Rosenbloom, S., Miller, R., Johnson, K., Elkin, P. and
Brown, S. Interface Terminologies: facilitating direct entry
of clinical data into electronic health record systems. J Am
Med Inform Assoc, 13 (3).

[31] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A. and Katz.,
Y. Pellet Journal of Web Semantics (To Appear), 2006.

[32] Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar,
A., Lomax, J., Mungall, C., Neuhaus, F., Rector, A.L. and
Rosse, C. Relations in biomedical ontologies. Genome
Biology, 6 (5). R46.

[33] Smith, B., Kusnierczyk, W., Schober, D. and Ceusters, W.
Towards a Reference Terminology for Ontology Research
and Development in the Biomedical Domain KR-MED
2006, Biomedical Ontology in Action., Baltimore MD,
USA 2006.

[34] Smith, M.K., Welty, C. and McGuinness, D.L. OWL Web
Ontology Language Guide, 2004.

[35] SNOMED International. SNOMED-CT Codes, 2007.

[36] The Apache Software Foundation. Axis: A Webservices
toolkit, 2005.

[37] The Gene Ontology Consortium. The Gene Ontology,
2007.

[38] Tsarkov, D. and Horrocks, I. FaCT++ description logic
reasoner: System description. in Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2006), Springer,
Heidelberg, 2006, 292-297.

[39] U.S. Department of Health & Human Services.
International Classification of Diseases, Ninth Revision,
Clinical Modification, 2006.

	1. INTRODUCTION
	2. REFERENT TRACKING
	2.1 Main Principles
	2.2 Requirements

	3. APPLIED TECHNOLOGIES
	3.1 Object-Oriented Programming and Java
	3.2 Resource Description Framework

	4. RTS ARCHITECTURE
	4.1 RTS Web Services
	4.2 RT Access API
	4.2.1 RTRepository
	4.2.2 Querying the RTS using SPARQL
	4.2.3 RTVisGraph

	4.3 RT Data Access API
	4.4 Reasoning API

	5. RESULTS
	6. CONCLUSION & FUTURE WORK
	7. REFERENCES

