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Abstract: This chapter looks at the intersection of intelligence and ontologies and 

semantic technologies, and tries to characterize the impact of these in the future. It 

provides a view into some emerging technologies such as query languages and rule 
standards for the Semantic Web. It also provides some guidance from a different 

domain, the biomedical domain, and tries to show that realist ontologies, 

ontologies based on common real world characterizations, have an effective 
impact on applications in those domains. Finally, it looks at the potential impact of 

these technologies on intelligence collection and analysis in the future, and makes 

some predictions. 

Keywords: Ontology, information-sharing, intelligence community, semantic 

technologies, healthcare. 

 

 

 

 Introduction 

In this chapter we look ahead: at ontology and semantic technologies and standards that 

are emerging, at the prospective evolution of the intelligence community, at where 

things could go in the future. The future direction and its success depend on many 

factors, including the commitment to embracing these technologies and the quickness 

and sophistication of their adoption. To assist our consideration of issues in technology 

adoption that could affect the intelligence community, we look at a test case, that of the 

adoption of these technologies by the healthcare community, and its prospective 

lessons for the intelligence community. Finally, we describe our projections and hopes. 
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1.  Emerging Ontology and Semantic Technologies and Standards 

We‘ve largely focused on Semantic Web technologies in this book. Why? Because 

Semantic Web technologies represent n emerging set of global standards that are 

commercially rooted and also driven by a standards process that tends to be shorter in 

lifespan than older standards processes. This typically shorter, differently regimented 

standards process, usually enacted under the World Wide Web Consortium (W3C), 

does not guarantee better standards, but standards that typically are more immediately 

adapted to multiple communities of the Internet, e.g., researchers, Web and service 

developers, database practictioners, digital librarians, ontologists, etc.  This is not to 

diminish the value of ISO standards and, in particular, ISO Common Logic, which is a 

valuable standard for representing very expressive logical ontologies. 

1.1. Complexity of Applications and Costs 

However, a general maelstrom of activity and acclamation does not guarantee the 

success of the technologies touted. The value of the work the technologies accomplish, 

and in fact, the greater value and lesser cost of the work they accomplish even as 

prorated over time, must be demonstrated. Value, potential value, cost over time – all 

of these must be estimated. However, as is usual with technological evolution, there is 

a spectrum or continuum behind the potential adoption of technologies, because there is 

a spectrum behind the expressivity of the models and the complexity of the potential 

applications that those models can provide, as Figure 1 depicts [1]. 

 
Figure 1. More Expressive Semantic Models Enable More Complex Applications 

 

In Figure 1 shows that as the expressiveness of the semantic model increases, so 

does the possibility of solving more complex problems. Note that we distinguish term 

and concept here, where their definitions are the following (from [1]).  



Terms (terminology) are natural language words or phrases that act as indices to 

the underlying meaning, i.e., the concept (or composition of concepts).  The term is 

syntax (e.g., a string) that stands in for or is used to indicate the semantics (meaning). 

A concept (a universal category for referents) is a unit of semantics (meaning) in 

the mental or knowledge representation model. In an ontology, a concept is the primary 

knowledge construct, typically a class, relation, property, or attribute, generally 

associated with or characterized by logical rules. In an ontology, these classes, relations, 

properties are called concepts because it is intended that they correspond to the mental 

concepts that human beings have when they understand a particular body of knowledge 

(subject matter area or domain) but at the philosophical universal level, i.e., as kinds of 

entities. In general, a concept can be considered a placeholder for a category (way of 

characterizing) of specific real world referents. From a realist perspective, as will be 

discussed in the next section, these concepts as placeholders are dispensable. 

For simple applications, controlled vocabularies, terminologies, and 

classificational systems, usually structured in topic taxonomies or thesauri, are 

sufficient. For more complex applications that require precise semantics, more 

expressive models, i.e., ontologies, are required. 

Costs of development and maintenance of models have to be tied to use cases and 

requirements, initially as they exist but also as they evolve over time. A larger cost 

initially that engenders an ascending benefit over time may be preferable to a much 

lower initial cost that generates a plateau or even descending slope of accrued benefit, 

sometimes within a short period of time. Figure 2 [1] notionally depicts this tradeoff 

between the cost and complexity of the semantic model developed and the prorated 

value over time of the benefit of using such a model, including reduced maintenance 

costs. 

In recent years, there have also emerged better models to estimate the cost of 

developing ontologies, such as ONTOCOM [2, 3, 4] which also include estimation 

software in the form of detailed spreadsheets.
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Figure 2. Approximate Cost/Benefit of Moving up the Ontology Spectrum: From Simpler Taxonomies to 

Ontologies 
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1.2. Emerging Technologies for Ontologies and the Semantic Web 

Among the technologies focused on the Semantic Web, in recent years, a number stand 

out as potentially very useful, for many kinds of applications, but especially for 

intelligence analysis. These technologies include query languages, repository structures, 

and  rules for rule-based reasoning and interchange. There are also many more kinds of 

inference engines, from description logic based classificational reasoners to first-order 

logic and logic programming based reasoners, and many new end-user Semantic Web 

applications. This section discusses the SPARQL Protocol and RDF Query Language 

(SPARQL) [5], triple-stores, the Rule Interchange Format (RIF) [6], and a range of 

inference engines. These technologies built on the established and more mature 

Semantic Web languages of the Resource Description Framework (RDF), the Resource 

Description Framework Schema (RDFS), and the Web Ontology Language OWL, the 

latter two of which are ontology description languages and the first is a graph-

structured instance language. These languages became W3C standards in 2004. OWL 2, 

however, is a relatively new proposed standard, and increases the expressivity of OWL 

[7] by providing more datatype support, support for declarations and annotations on 

ontologies, and ―syntactic sugar‖ for more succinctly and easily defining certain 

constructs in OWL. 

The SPARQL query language [5] is a standard graph-based query language 

defined by the W3C to work RDF triple stores (i.e., n-tuple stores) which are graph-

structured, potentially exist anywhere on the Internet or within an Intranet, and are 

exposed as so-called SPARQL endpoints. A SPARQL endpoint is a way of indexing a 

triple store, typically by providing an International Resource Identifier (IRI), so that it 

is known to a query engine. Currently, SPARQL is defined only over RDF, but many 

Semantic Web inference engines have extended SPARQL support to include the 

ontology languages RDFS and OWL. These engines extend the SPARQL support by 

enabling ontology reasoning methods over the queries, in addition to strict retrieval of 

graph-based instances.  

Some representative triple stores are: OWLIM [8], Garlik 4Store [9], 

AllegroGraph [10], Jena [11], Sesame [12], Oracle 11g [13], Mulgara [14], and 

OpenLink Virtuoso [15]. Some triple stores advertise high storage sizes and various 

other high access, query, and load rates, with high-end triple stores reporting the ability 

to store billions of triples. But these claims are not yet independently confirmed.  Also, 

many of these triple stores also support inference engines or link to existing inference 

engines, both those based on description logics (OWL is mostly a specific kind of 

description logic) and those based on more general logic and rules. Description logic 

reasoners include Pellet [16], RacerPro [17], FaCT/FaCT++ [18], etc. More general 

logic and rule reasoners include Jena, KAON2 [19], SILK [20], and various logic 

programming (Prolog) engines such as SWI-Prolog [21], Ciao Prolog [22], XSB Prolog 

[23], HighFleet‘s (formerly Ontology Works) High Performance Knowledge Server 

[24], Cyc [25], and TopQuadrant‘s TopBraid, [26] etc. 

Rules are IF/THEN constructs that specify constraints on classes, relations, and 

properties (see [27] for more discussion on rules and related Semantic Web notions, 

from which this section is adapted). They thereby constrain how new classes, relations, 

and properties are defined, prevent contradictory information from being added to a 

knowledge base, and enable discovery of new information without explicitly asserting 

the information. Examples of common rules are 1) a rule that prevents a ―child‖ from 

being its own ―parent‖, and 2) a rule that says a ―parent‖ of a ―parent‖ that has a 



―child‖ is a ―grandparent.‖ Rules are very closely associated with proof, i.e., rules 

require a proof mechanism to realize their value. In fact, a class of rules, inference rules, 

are directly associated with proof insofar as those inference rules license valid 

deductions as steps in an automated proof.  

The de facto standard Semantic Web Rule Language (SWRL) is an example of a 

language for expressing rules and is based on OWL [28]. There is an emerging W3C 

standard rule language based on XML syntax called the RIF [6], which will probably 

supersede SWRL.  

Because RIF tries to accommodate many different kinds of rule engines and 

existing deployed and used implementations, RIF is structured into multiple versions, 

called dialects or profiles, including the following: Core: the fundamental RIF 

language and a common subset of most rule engines (providing a basic Datalog, where 

Datalog is a simplified logic programming language); BLD (Basic Logic Dialect): this 

adds to Core, by providing logic functions, equality in the then-part, and named 

arguments (providing a basic Horn Logic, which is the foundation of Prolog, the 

primary logic programming language) ; and PRD (Production Rules Dialect): this adds 

a notion of forward-chaining rules, where a rule fires and then performs some action, 

such as adding more information to the store or retracting some information (providing 

an expert system-like capability). 

2. A Prospective Lesson for Intelligence: Realist Ontologies in Healthcare 

In the domain of healthcare information technology (HIT) it has been commonly 

accepted for some years now that both the development and use of clinical terminology 

should be supported by formal methods. Although this is a thesis that we strongly 

support, we wish no less strongly to insist that formal methods alone are not enough. 

The use of a Description Logic-based system appears, for example, not to have 

provided any guarantee for the absence of errors in SNOMED-CT [29], one of the most 

popular formal biomedical terminologies today. 

With the extremely positive response to the creation of the Open Biomedical 

Ontologies (OBO) Foundry [30] it became clear that a role had to be played by realist 

ontology in making better biomedical terminologies. Realist ontology helped in 

detecting errors and in ensuring intuitive principles for the creation and maintenance of 

systems of a sort that can help to prevent errors in the future. More importantly still, 

however, it helps in ensuring that terminologies are compatible with each other. Note 

that we say ‗realist ontology‘, in order to distinguish ontology in our understanding 

from the various related things [31] which go by this term in contexts such as formal 

knowledge representation. It is a realist conception of ontology which underlies 

statements such as: 

 

The UMLS is an extensive source of biomedical concepts. It also 

provides a large number of inter-concept relationships and qualifies 

for a source of semantic spaces in the biomedical domain. However, 

the organization of knowledge in the UMLS is not principled nor 

consistent enough for it to qualify as an ontology of the biomedical 

domain [32]  

 



In the tradition of analytical philosophy, ontology is understood by the OBO 

Foundry community not as a software implementation or as a controlled vocabulary, 

but rather as ‗the science of what is, of the kinds and structures of objects, properties, 

events, processes and relations in every area of reality‘ [33]. Ontology as it concerns 

us here is a theory of those higher-level categories which structure the biomedical 

domain, the representation of which needs to be both unified and fully coherent – and 

as closely allied as possible to the representations used by clinicians in formulating 

patient data – if terminologies and coding systems are to have the requisite degree and 

type of interoperability. Ontology in this realist sense has successfully been used as a 

method to find inconsistencies in terminologies and clinical knowledge representations 

[34] such as the Gene Ontology [35] or the UMLS Semantic Network [36]. The method 

has also proved useful in drawing attention to certain problematic features of the HL7 

RIM [37, 38, 39]. 

One of the major insights brought about by realist ontology in the healthcare 

domain is that biomedical terminologies can only be compared amongst each other, or 

used without loss of information within an electronic healthcare record (EHCR) system, 

if they share a common framework of top-level ontological categories [40]. Often one 

talks in this connection merely of a shared or common semantics, meaning thereby the 

sort of regimentation that can be ensured through the use of enabling technologies such 

as RDF(S) [41] and OWL [42] that currently enjoy a wide interest through their 

association with the Semantic Web project, not to forget systems such as Protégé that 

are able to cope with them in a user-friendly way [43]. On closer inspection, however, 

one discovers that the ‗semantics‘ which comes with languages like RDF(S) and OWL 

is restricted to that sort of specification of meaning that can be effected using the 

formal technique of mathematical model theory, which is to say that meanings are 

specified by associating with the terms and sentences of a language certain abstract set-

theoretic structures, taking Alfred Tarski‘s ‗semantic‘ definition of truth for artificial 

languages as paradigm [44]. But model theory is metaphysically and ontologically 

almost completely neutral. Merely to formulate statements in a language such as OWL 

is far from building an ontology in the sense of ontology that is employed by analytical 

philosophers, and neither would translating a terminology into OWL turn it into an 

ontology. Such translation would indeed allow consistent reasoning about the ‗world‘ – 

but only in the model-theoretic sense of ‗world‘ that signifies not the flesh-and-blood 

reality with which biomedicine is concerned, but rather merely only some highly 

simplified set-theoretic surrogate. The task of ensuring that the latter somehow 

corresponds in broad terms to the real world of what happens and is the case, was in the 

semantics biomedical literature almost never addressed. Now it has become clear that 

the whole detour via semantic models is in fact superfluous: the job of ontology is not 

the construction of simplified models; rather, a biomedical ontology should directly 

correspond to reality itself in a manner that maximizes descriptive adequacy within the 

constraints of formal rigour and computational usefulness. 

Applying realist ontology to terminologies and EHCR architectures means in the 

first place applying it to those entities in reality to which these artifacts of the human 

intellect refer, such as concrete patients, diseases and therapies. We do this to serve at 

least one important goal, namely making terminologies coherent, both internally as 

well as in their relation to the EHCRs in or for which they are used.  

Already a very superficial analysis of a coding system such as the International 

Classification of Diseases [45] reveals that this system is not in fact a classification of 

diseases as entities in reality. Rather it is a classification of statements about disease 



phenomena which a physician might attribute to a patient. As an example, the ICD-10 

class B83.9: Helminthiasis, unspecified does not refer (for example) to a disease caused 

by a worm belonging to the species unspecified which would be some sub-species of 

Acanthocephalia or Metastrongylia. Rather, it refers to a statement (perhaps appearing 

in some patient record) made by a physician who for whatever reason did not specify 

the actual type of Helminth the patient was suffering from. Neither OWL nor reasoners 

using models expressed in OWL would complain about making the class B83.9: 

Helminthiasis, unspecified a subclass of B83: Other helminthiasis; from the point of 

view of a coherent ontology, however, such a view is nonsense: it rests precisely on a 

confusion between ontology and epistemology [46]. 

A similar confusion can be found in EHCR architectures, model specifications, 

message specifications or data types for EHCR systems. References to a patient‘s 

gender/sex are a typical example. Some specifications refer to it as ―administrative sex‖ 

(leaving it to the reader of the specification to determine what this might actually mean). 

The possible specifications of administrative sex are then female, male, unknown, or 

changed. Unknown, here, does not refer to a new and special type of gender (reflecting 

some novel scientific discovery); rather it refers to the fact that the actual gender is not 

documented in the record. 

An interpretation along these lines does not work in every case, however. Consider 

those specifications which refer explicitly to ―clinical observations‖, as is the case for 

Corbamed-COAS (―Clinical Observations Access Server‘), which consists of:  

 

any information that has been captured about a single patient‟s 

medical/physical state and relevant context information. This 

[information] may be derived by instruments such as in the case of 

images, vital signs, and lab results or it may be derived by a health 

professional via direct examination of the patient and transcribed [sic]. 

This term applies to information that has been captured whether or not 

it has been reviewed by an appropriate authority to confirm its 

applicability to the patient record. [47] 

 

When in a EHCR system that claims to follow the COAS specifications the 

specification ―unknown‖ would be registered for gender, then that specification has to 

be interpreted that an observation has been made with respect to the patient‘s gender, 

and that as a result of that, an unknown kind of gender has been observed. Of course, 

that is not supposed to be the idea. 

European and international efforts towards standardization of biomedical 

terminology and electronic healthcare records were focused over the last 15 years 

primarily on syntax. Semantic standardization was restricted to terminological issues 

around the semantic triangle paradigm [48] on the one hand and to issues pertaining to 

knowledge representation (and resting primarily on the application of set-theoretic 

model theory) on the other hand. Moves in these directions are in indeed required, and 

the results obtained thus far are of value both for the advance of science and for the 

concrete use of healthcare telematic applications. We can safely say that the syntactical 

issues are now resolved and also that the problems relating to biomedical terminology 

(polysemy, synonymy, cross-mapping of terminologies, …) are well understood – at 

least in the community of specialized researchers. Now, however, it is time to solve 

these problems by using the theories and tools that have been developed so far, and that 

have been tested under laboratory conditions. This means using the right sort of 



ontology, i.e. an ontology that is able explicitly and unambiguously to relate coding 

systems, biomedical terminologies and electronic health care records (including their 

architecture) to the real world. 

To do this properly will require a huge effort, since the relevant existing standards 

need to be reviewed by experts who are familiar with the appropriate sort of ontological 

thinking (and this will require some effort in training and education). Even before that 

stage is reached, however, there is the problem of making all constituent parties – 

including patients (or at least the organizations that stand up for them), healthcare 

providers, system developers and decision makers – aware of how deep-seated the 

existing problems are. Having been overwhelmed by the exaggerated claims on behalf 

of XML and similar silver bullets of recent years, that would solve everything, they 

must be informed about the fact that XML alone isn‘t a silver bullet. And for sure, we 

must also be careful in not giving realist ontology a similar silver bullet status. 

The message of realist ontology is that, while there are various different views of 

the world, this world itself is one and unique. It is our belief that it is only through that 

world that the various different views can be compared and made compatible. To allow 

clinical data registered in electronic patient records by means of coding (and/or 

classification) systems to be used for further automated processing, it should be crystal 

clear whether entities in the coding system refer to diseases or rather to statements 

made about diseases, or to procedures and observations, rather than statements about 

procedures or observations. As such, coding systems used in or for electronic 

healthcare records should be given a precise and formal semantics that is coherent with 

the semantics of the record as well as with the real world parts that are described by 

them. 

3. Intelligence, Ontologies, and Semantic Technologies 

The previous section underscored that realist ontologies are important, and they are 

important for intelligence collection and analysis. Realist ontologies are based on 

common understandings of the real world, and try to avoid conceptualist pitfalls (where 

concepts are introduced without direct origin in real world objects, relations, and 

properties) and epistemological, belief-based, or evidential (we use these terms 

synonymously) observational knowledge. The latter knowledge or approximations of 

knowledge are extremely important and are the basis of intelligence analysis and 

collection, but they largely address instance knowledge of the real world, i.e., 

individuals or particulars, about whom there may be many sources of data, much of 

which are contradictory. Why? Because the data being received from human and 

machine sensors are uncertain, error-prone, and often subject to noise, misinterpretation, 

and deception. It is very important to capture this incoming data, present it to 

intelligence analysts, and attempt to characterize it according to realist ontologies, but 

those realist ontologies describe the best knowledge of the real world we have, and the 

best knowledge of the general properties of that incoming data. They do not presume to 

be able to adjudicate which belief or observation is actually correct. That‘s what an 

intelligence analyst does, when he/she stitches together the evidence, generates 

hypotheses, and then either confirms or assigns a value to those hypotheses according 

to some strength of belief or evidence. 

Ontology addresses the real entities, relations, and properties of the world; 

epistemology is about the perceived and belief-attributed entities, relations, and 



properties of the world, empirical evidence gleaned that will be described or 

characterized by ontology (see [49, 50], from which this is adapted, for further 

discussion of the differences between ontology and epistemology). Epistemology is 

employed in the use and qualification of data and actual data as stored in databases or 

tagged or indexed in documents. If ontology states that human beings have exactly one 

birth date, the data about a specific person is epistemological: in a given set of 

databases the person instance named John Smith (we assume we can uniquely 

characterize this instance, but we may not) may have two or more attributed birth-dates, 

not one of which are known to be true. Ontology tells us that everything that lives has 

only one birth-date. Epistemology helps us understand how we can address which one 

of seven birth-dates is possibly the most accurate, i.e., true. Without ontology, there is 

no firm basis for epistemology. 

Epistemological concerns often distort and push off needed ontological distinctions. 

Why? Because analysts of information often believe that all is hypothesis and 

argumentation. They really don't understand the ontological part, i.e., that their 

knowledge is really based on firm stuff: a human being only has one birth date and one 

death date, though the evidence for that is multivarious, uncertain, and needs to be 

hypothesized about like the empirical, epistemological notion it is. Often also the 

charge that knowledge is just too ―dynamic‖ is unjustified. Instance knowledge is very 

dynamic, i.e., the particular people, places, things, events we are interested in change 

all the time. My location is different from minute to minute. My activities change every 

minute, i.e., the events I participate in are new events that occur in time as time moves 

forward. I cut my hair or dye it. I marry, have children, divorce, move to another city, 

change jobs, go back to school, start a new hobby, make new friends, lose money in a 

new investment, watch and like different television programs, books, music, I eat 

different food and like different food. I think new thoughts and act on them. But the 

knowledge behind those instances largely remains the same. I am still a human. 

Families are still families. Organizations, work relationships, friendships, jobs, 

locations, kinds of events and activities, interests, etc., are the same. Occasionally this 

generic, ontological knowledge changes. For example, perhaps I join a new kind of 

organization where I pay the organization to work there. If this would occur (perhaps 

it‘s unlikely), then my ontology about organizations would have to change, to reflect 

this new real world situation. Perhaps in the future, a collection of men and women can 

combine to provide genetic material to create a child – in which case, the ontological 

notion of parent will have to change. The notion of what a parent and a child is, is 

ontological; which people are the parents of which child is at least partially 

epistemological: we need evidence, but it is based on our ontological knowledge.  

Ontologies and semantic technologies are important and will be increasingly 

important for the intelligence community in the coming years. We have focused this 

book primarily on ontologies, representing the high end of semantic models, but 

semantic technologies more generally include a range of semantic models, some of 

which such as taxonomies, thesauri, and conceptual models are less expressive than 

ontologies, but useful for particular kinds of applications. Although predictions are 

notoriously problematic and often overcome by unanticipated events, we think we can 

make a number of predictions that will become true over the next ten to twenty years: 

 

 The intelligence community will increasingly use semantic technologies in 

two forms: in the form of vocabularies that enable diverse sub-communities to 

use their own terms (words and phrases) to express their knowledge and 



queries, and in the form of ontologies that represent and model the meanings 

of those vocabularies, so that common information can be shared despite 

terminological differences among communities. The community of interest 

(COI) paradigm embraces these notions, and top-down and mid-level 

vocabularies such as UCore and Command and Control Common Core begin 

to address the vocabulary (syntactic) side, though are not yet sufficiently 

focused on the ontology (semantic) side. Largely this is because practictioners 

are focused purely on XML technologies, and are knowledgeable primarily 

about database technologies, i.e., structural methods and local semantics only. 

This will change over time, is changing now. 

 Ontologies and semantic technologies will increasingly provide a basis for 

intelligence collection and analysis to go beyond local and structural data 

models, which are the standard currently for the structured data of the 

database community, and beyond the primarily statistical models, which are 

the standard currently for the unstructured data of the natural language and 

information retrieval communities. Semantic analysis and interoperability will 

be seen to provide more capability over structural and statistical methods and 

models for sounder and more effective intelligence capture and analysis. For 

example, greater precision for responses to queries depends on better semantic 

representation of the data. As is already apparent, analysts and other kinds of 

users of documents and information, do not have the time to keep performing 

syntactic, free text searches ala Google – because they do not have the time to 

read or even skim the documents returned in the result sets of queries, to see 

whether those documents are really relevant to their queries. How can an 

analyst tell whether the real answer or best data exists in document 10,000, 

since he/she will never get to that document?  

 Organizations will change to accommodate ontologies and semantic 

technologies. The primary issue with technological change is not 

technological, but sociological. The people and the organizations must change, 

for better technological methods to be employed to solve existing problems. 

Institutionalization of change is very hard. The intelligence community, like 

governmental and even commercial organizations in general, can 

accommodate technological change, but their sociological milieus and 

organizational structures in general cannot.  Software acquisition processes are 

monolithic and even in the era of service oriented architecture (SOA), which 

tries to decompose the older systems and systems of systems into service 

atoms and molecules, organizational and process change really depends on 

heroes, i.e., managers and directors who are technologically aware and 

advocates for change, but who are in oversight and guidance positions for only 

two years. When they leave after two years, any progress they may have 

initiated  and supported evaporates, and the institution is again left bereft. 

Ontologies and semantic technologies cannot solve sociological and 

organizational problems.  

 Unfortunate events will propel change. This is what we all fear. Correlations 

will not be made, since the data stores are huge, the sources are immense, 

noise is rampant, collection and analysis resources are insufficient, and there 

are no overriding descriptions, models, rules, procedures, processes, nor 

organizational and sociological support that will enable evidence to be stitched 



together, described under common ontological, semantic, and epistemological  

characterizations, and acted upon in time to prevent bad events.  

4. Cautious Optimism 

We remain cautiously optimistic about change for the intelligence community, and the 

prospects for ontologies and semantic technologies to propel those changes. If any 

technology can be seen to enable a revolutionary leap forward for intelligence 

collection and analysis, if not for information technology in general, it is that of 

ontologies and semantic technologies. The authors of these chapters and the editors of 

this book are primarily technologists, and so, by predisposition, optimists about the use 

of technology to effectively achieve information-technological goals. But we are also  

realists, as our predisposition to realist ontologies indicates, and pragmatists: we are 

interested in these technologies, yes, but to serve a purpose, specifically to increase the 

effectiveness of intelligence collection and analysis. We are interested in technologies 

serving a purpose, and from our perspective, the best service for ontologies and 

semantic technologies is to enable the intelligence community, as it is for other 

scientific communities, to characterize the real world and thereby find out the truth and 

the probabilities that surround that truth, and so prevent, correct, and adjust to events 

that threaten nations and peoples. We wish us all sensible heads, sound technologies, 

stout hearts, and good luck. 
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