
Applying Referent Tracking to the Use and Evolution of
Websites

Werner Ceusters1, Shahid Manzoor1

1 Ontology Research Group, NYS Center of Excellence in Bioinformatics & Life Sciences
SUNY at Buffalo, 701 Ellicott street, Buffalo NY 14203, USA

ceusters@buffalo.edu
smanzoor@buffalo.edu

http://org.buffalo.edu/RTU

ABSTRACT. Many websites or parts thereof are information resources that contain de-
scriptions about what is believed to be the case in (first-order) reality in the eyes of the web-
site authors. When reality or the beliefs therein change, so should do the website. Interest-
ingly, any change in a website, is an additional (second-order) change in reality itself. And
so is any visit to a website. In this paper, we report on our work to develop a website that al-
lows any such change in first- or second-order reality to be tracked. This is achieved by link-
ing the site to a Referent Tracking System which assigns a globally unique and singular
identifier to each entity in reality that is relevant to be tracked, including its own content.
These identifiers are used in composite representations that describe the relationships
amongst these entities following the realist agenda of Basic Formal Ontology.

1 Introduction

We are most likely moving towards a society which is such that if for something
there is no representation on the Web that something probably doesn’t exist. The
number of websites, currently estimated to be about 180 million, is growing exponen-
tially since the mid-nineties, and so also is the number of data-elements stored in
digital resources of various kinds, many of which are also made available to author-
ized users over the Internet. The ultimate end of this evolution might very well be the
existence of a society of information systems which contain all together a digital
copy of the world which is updated synchronously with every change in the world
that matters, including some changes in the information itself.

In [Ceusters & Manzoor 2009] it is described how such an evolution might be sup-
ported by the use of networks of Referent Tracking Systems (RTS). A RTS is a special
kind of digital information system which keeps track of (1) what is the case in reality
and (2) what is expressed in other information systems about what is believed to be the
case in reality. It does so by using the Referent Tracking (RT) paradigm for information
management that is distinct from other approaches in that each data element has to point
to a portion of reality in a number of predefined ways. RT has been introduced in the
context of Electronic Health Record keeping [Ceusters & Smith 2005, 2006b], but its

Keio University Press Inc. 2009

2 Werner Ceusters and Shahid Manzoor.

applicability is wider than that, examples being digital rights management [Ceusters &
Smith 2007b] and corporate memories [Ceusters & Smith 2007a].

In this paper, we report on our work to redesign the website of the Referent Tracking
Unit (RTU) within the Ontology Research Group in such a way that it satisfies the ap-
plicable principles underlying RT which themselves are based on the principles pro-
posed in Basic Formal Ontology [Grenon 2003] as they are applied in the area of bio-
medicine [Smith et al. 2007] and more recently also in information management [Rut-
tenberg et al. 2008]. The goal of this effort is double: (1) to understand better the ontol-
ogy of information artifacts and their use, and (2) to test the adequacy of RT as a tool
for faithful reality representation.

2 A Realist’s View on Websites

A website is a collection of web pages, images, videos or other digital information
artifacts that is hosted on one or more web servers, and is usually made accessible via
the Internet. A web page, in its most simple form, is an electronic document, typi-
cally written in HTML or XHTML, that is almost always accessible via HTTP, a
protocol that transfers information from the web server for display in the user's web
browser. Simple web pages are stored on the web server in the same form as the user
will view them when visiting the website. In contrast to these static websites, there
are also dynamic websites that generate web pages on the fly by retrieving the con-
tent from a repository of web page components. One motivation for this approach is
that it is easier to maintain a few web pages with some predefined layout plus a re-
pository that provides content, than it is to build and update hundreds of individual
web pages and links. Another one is to vary the content of a page on the basis of
certain criteria.

For clarity, we will use the term ‘browser page’ for the copy of a web page received
by the user on the basis of a request and which in most browsers is that what can be
viewed when hitting the source button. For what is viewed automatically when a
browser receives a browser page, we will use the term ‘browser page rendering’ (or
‘rendering’ for short). We reserve the term ‘server page’ for that on the side of the
server from which the browser page is build. Whereas the browser page is always a
single digital file, the server page, in contrast, can be a collection of several files or file
parts the most important ones being the header, footer and content file, the latter con-
taining the main content. By ‘main content’ we mean that part of the content of a digital
file which pertains exclusively to the information that the author of the web page
wanted to store in the file, thus excluding anything that is added by operating systems
(such as beginning and end of file markers) or file manipulation protocols, but includ-
ing for instance layout information and, of course, the propositional content as well as
any other information related to the intentions of the page author.

Fig.1 is an image of the rendering of (part of) the ‘referent tracking paradigm’
browser page, one of the twenty pages that currently are offered through the RTU’s
website. This website is designed in such a way that visitors are offered the same look

 Interdisciplinary Ontology Conference 2009 3

Fig.1: Layout of a browser page from the Referent Tracking Unit’s website

and feel for each rendering. The header, which amongst other things contains the
menu to navigate through the site, and the footer are both almost identical for each
page. The body contains the main content and is distinct for each web page. This
consistency is achieved by using dynamic server pages: browser pages are created
dynamically by combining a header and footer file which are each numerically the
same for all browser pages, with a content file which is distinct for each browser
page.

Besides the anatomical configuration of a website, there are also two dynamic as-
pects that are relevant in the context of our endeavour: its use, and its evolution.

With respect to a website’s use, whether or not a static or dynamic approach is taken,
that what is on the server is from an ontological perspective never that what the web
page visitor receives in its browser, nor that what he sees. In the case of a static web
page, it is in fact a copy of the file on the server that is received, and a rendering of that
copy – governed by the rendering conventions which are expressed as HTML tags –
which is displayed. Two distinct users will only see a rendering of the same – i.e. nu-
merically the same or identical – copy of a static page if they are both looking at the
same screen at the same time.

Whenever a user hits the refresh button of a browser which is configured in such a
way that a new request is issued to the remote server rather than to the local cache of
the machine on which the browser is running, and if the page on the server has not been
updated since the last request, he will obtain another copy of that page. The two copies
received are identical in form and content, but nevertheless distinct copies. They each
can, for instance, be saved under a different file name. Of course, in between two visits,

Keio University Press Inc. 2009

4 Werner Ceusters and Shahid Manzoor.

the page on the server might have been updated, in which case the user receives a copy
of that new page, that copy being not only numerically distinct from the ones received
earlier, but also distinct in content.

The request to view a page is an event of which the existence and nature is docu-
mented in the request message that is generated by the browser while executing his part
of the HTTP communication protocol. Parts of this message relevant for our purposes
contain information about the website host, the server page being requested, some char-
acteristics about the requesting software agent such as type and version of the browser,
the operating system under which the browser runs, the time the request was issued, the
IP address of the user’s machine, the latter’s host name as well as the machine’s port
through which the communication is set up.

The second ontologically interesting dynamic aspect of a website is its evolution
over time. Under the adagio that information is outdated at the time of publication, high
quality websites undergo frequent changes: web pages can be added, deleted and modi-
fied, and this for a number of reasons classified in relation to that level of reality what
undergoes the change [Ceusters & Smith, 2006a]: (1) a change in reality (level 1), for
instance in case a vita page is updated when the person in question reports on the publi-
cation of a new paper or the winning of an award, (2) a change in the page author’s
understanding or knowledge about what is the case in reality (level 2), for instance
when completing his vita page by referring to some events in the past he forgot about,
or didn’t assess to be important enough to be mentioned, or (3) mere changes in layout
or formatting, the correction of spelling mistakes, and so forth (level 3).

3 Tracking Website Related Referents

In order to keep track of the history of a website by using a RTS, a number of princi-
ples must be applied. These principles affect both the way in which the website has
to be managed, and how events that occur during the lifetime of the website are to be
represented. Most important is that the entities to be tracked are denoted by an In-
stance Unique Identifier (IUI), the assignment of which is managed by the RTS itself.
Relevant website related entities that receive an IUI in our current setup are:

• each individual HTML-encoded content file on the server which is made ac-
cessible for viewing as part of the RTU website (thus not the server page itself,
nor the content of it, pdf-files, and so forth – see section 5 for some issues),

• the middleware component (i.e. a collection of executable software code) on
the server that, when activated, manages the assignment of IUIs and the gen-
eration of representations, called ‘RT-tuples’, in the RTS (a list of templates
for RT-tuples is shown in Table 1),

• each individual browser page that is requested, irrespective of whether the cor-
responding server page has changed. The IUI for a browser page from the
RTU website is displayed right of the menu bar (Fig.1),

• each request message.

 Interdisciplinary Ontology Conference 2009 5

This list will very likely increase in size in the near future.
In addition, to satisfy the RT principles [Ceusters 2007, Ceusters et al. 2006, Ceust-

ers & Smith 2006b], there must be an IUI for each ontology and terminology that is
used to describe the entities that are tracked.

Whereas new browser pages receive automatically an IUI, an IUI for the content of
server pages is generated on demand of the page author only, typically, but not always
or automatically, whenever the server page is updated. This is because one of the prin-
ciples of RT is that only entities in reality which are relevant for some purpose should
receive an IUI. Because of the dynamic aspect of the RTU website, server pages are
only accessible to the site’s authors and administrators and are thus only relevant to
them (at least in the current setup).

Table 1: RT-tuple templates registered in a Referent Tracking System

Tuple name Attributes
 Description
A-tuple < IUIa, IUIp, tap>

Act of assignment of IUIp to a particular at time tap by the particular referred to
by author IUIa

D-tuple < IUId, IUIA, td, E, C, S >
A D-tuple is inserted (1) to resolve mistakes in RTS, and (2) whenever a new tu-
ple other than a D-tuple is inserted in the RTS. The particular referred to by IUId
registers the particular referred to by IUIA (the IUI for the corresponding A-tuple)
at time td. E is either the symbol ‘I’ (for insertion) or any of the error type symbols
as defined in (Ceusters, 2007). C is the reason for inserting the A-tuple. S is a list
of IUIs denoting the tuples, if any, that replace the retired one.

PtoP-tuple <IUIa, ta, r, IUIo, P, tr>
The particular referred to by IUIa asserts at time ta that the relationship r from on-
tology IUIo obtains between the particulars referred to in the set of IUIs P at time
tr.

PtoU-tuple <IUIa, ta, inst, IUIo, IUIp, UUI, tr>
The particular referred to by author IUIa asserts at time ta that the particular re-
ferred to by IUIp instantiates – by means of the inst relation defined in ontology
IUIo – the universal UUI at time tr.

PtoC-tuple <IUIa, ta, IUIc, IUIp, CUI, tr>
The particular referred to by IUIa asserts at time ta that at time tr concept code
CUI from terminology system IUIc is an accurate term for IUIp

PtoU(-) -tuple <IUIa, ta, r, IUIo, IUIp, UUI, tr>
The particular referred to by IUIa asserts at time ta that the relation r of ontology
IUIo does not obtain at time tr between the particular referred to by IUIp and any
of the instances of the universal denoted by UUI at time tr.

PtoN < IUIa, ta, ntj, ni, IUIp, tr, IUIc>
The particular referred to by IUIa asserts at time ta that ni is the name of the

Keio University Press Inc. 2009

6 Werner Ceusters and Shahid Manzoor.

nametype ntj used by IUIc to denote the particular referred to by IUIp at tr.
One good reason, so we believe, for assigning a new IUI to an updated content file is

version management and this from a double perspective: it allows to keep track of how
server pages evolve over time and what browser pages have been generated thereof and
then transmitted to users. Keeping track of this is an absolute requirement for the digital
copy of the world mentioned in the introduction not just to be a faithful copy of what is
the case now, but also of the world’s history.

An extra feature of the RTU website is that each browser page contains a checksum
which is calculated over the main content and the IUI of the browser page. The purpose
of this checksum is to detect modifications to the page and to serve as a safeguard for
both website users and authors. In case a user forges a browser page in an attempt to
claim that certain content was present while it actually was not, recalculation of the
checksum will make the fraud evident. On the flip side, the website authors can never
deny that certain content was there, because the recalculation of the checksum on an
unaltered browser page will return the same result. Browser pages created from the
same server page differ only in both IUI and checksum.

3.1 An Example: Tracking a Request to View a Web Page

Imagine a scenario under which a visitor of the RTU website requests a copy of the
server page associated with a content file to which is assigned IUI #12. Table 2
shows the RT-tuples, following the notation explained in Table 1, that are generated
as a result of this request.

As soon as the request message arrives at the RTU website, the middleware compo-
nent – to which is assigned IUI #2 and which functions as ‘author’ of RT-compatible
statements – asks the RTS to generate a new IUI which will be assigned to the request
message. There is no need here to verify whether this message has already been given
an IUI because that is impossible: each such message is unique. As a result, the RTS
inserts A-tuple #25 as an RT-compatible representation for the assignment of IUI #24 to
that message. Note that the RTS itself does not know to what precisely #24 is assigned;
that information is kept in a separate database of the application in which the header of
the message is explicitly linked to #24. In line with the RT principles, any insertion of
an A-tuple requires the insertion of a D-tuple, which in this case is the tuple to which
#26 is assigned. The E-attribute of #26 being set to ‘I’ and the C-attribute to ‘CE’ indi-
cate that the reason for the insertion is a change in reality.

Next the middleware requests the RTS to generate a new IUI which will be assigned
to the browser page that will be built on the basis of #12, the requested web page. This
results in the generation of #27 for the browser page and the insertion of A-tuple #28
and corresponding D-tuple #29.

 As a third step, the middleware informs the RTS that #27 is the browser page gener-
ated out of #12. It does this by linking the former to the latter by means of the Main-
ContentCopyOf relationship as defined in the Website Tracking Ontology designed for
this purpose and to which is assigned IUI #022. This leads to the generation of PtoP-

 Interdisciplinary Ontology Conference 2009 7

tuple #30 and corresponding D-tuple #31. These two tuples demonstrate nicely how the
RTS, guided by the right information from the middleware component, keeps track of
the different time instants involved: it is ‘known’ in the RTS since time-23 that at time-
22 the middleware component asserted that #27 is a content copy of #12 since time-20,
the latter being the time that the assignment of #27 was requested.

Next, it is asserted that #27 is generated following the request obtained through mes-
sage #24 and this by means of #022’s InstigatorOf relationship (tuples #32 and #33).

The fifth action taken by the middleware component in its communication with the
RTS relates to the generation of the checksum which leads to the creation of the tuples
with keys #35, #36, #37, and #38. Most pertinent is the PtoP-tuple that describes that
#34 denotes the checksum calculated for #27, suing #022’s ChecksumOf relation.

4 Technical Implementation

We selected the web server programming language PHP as the main implementation
language together with the Zend Framework, a third party component for PHP, which
provides modules for building websites based on the Model View Controller (MVC)
paradigm (Zend Technologies Ltd, 2009). MVC hinges on a clean separation of
software engineering objects into one of three categories: models for maintaining
data, views for displaying all or a portion of the data, and controllers for handling
events that affect the model or views (Fowler, 2002). When a browser requests a web
page from a web server, the Zend Framework (running on the web server) first exe-
cutes the programming logic in its controller part with the goal to retrieve data,
which is followed by the execution of the programming logic in the view part which
leads to the generation of HTML using the data received earlier. This technology
provides ease in managing the programming logic of a website especially when
changes are made frequently. Making changes in the layout or design of a website
does not always require changing the controller or model part.

4.1 Architecture

Figure 1 depicts how the various components interoperate when a user accesses the
RT website’s homepage via an HTTP client such as Internet Explorer. This access
causes the index.php file on the server to be executed which results in an activation
of the Zend Framework (ZF). ZF executes the request in several steps which includes
composing the webpage such as it will be viewed by the user and activating the mid-
dleware component which communicates with the RTS to assign IUIs to the various
particulars involved in the user request such as the http header representing the user
request, the requested web page, and so forth.

We needed to implement only one controller (called the IndexController in line with
the naming conventions on which the Zend Framework relies) and one action (indexAc-
tion). This indexAction is responsible to process all the requests of the RT website and

Keio University Press Inc. 2009

8 Werner Ceusters and Shahid Manzoor.

Table 2: RT-tuples registered in the RTS upon the request to send a browser page. The col-
umn labelled n shows the order in which the tuples are inserted. The column labeled Key
contains the IUI for that tuple. The other columns contain the attributes specific for each RT-
tuple template as specified in Table 1. The descriptions in the time-related columns tap, td, ta
and tr follow [European Committee for Standardization 2005].

A-tuples
n IUIp IUIa tap Key
1 #24 #2 (EVENT("#24 assignment") has-occ AT TP(time-18)) #25
3 #27 #2 (EVENT("#27 assignment") has-occ AT TP(time-20)) #28
9 #34 #2 (EVENT("#34 assignment") has-occ AT TP(time-26)) #35

D-tuples
n IUId IUIA td E C S Key
2 #2 #25 (EVENT("#25 inserted") has-occ AT TP(time-19)) I CE #26
4 #2 #28 (EVENT("#28 inserted") has-occ AT TP(time-21)) I CE #29
6 #2 #30 (EVENT("#30 inserted") has-occ AT TP(time-23)) I CE #31
8 #2 #32 (EVENT("#32 inserted") has-occ AT TP(time-25)) I CE #33

10 #2 #35 (EVENT("#35 inserted") has-occ AT TP(time-27)) I CE #36
12 #2 #37 (EVENT("#37 inserted") has-occ AT TP(time-29)) I CE #38

PtoP-tuples
n IUIa ta r IUIo P tr Key
5 #2 (EVENT("#30 is

asserted") has-occ
AT TP(time-22))

MainContent-
CopyOf

#022 #27,
#12

(EPISODE("#30 is
true") has-occ SINCE
TI(time-20))

#30

7 #2 (EVENT("#32 is
asserted") has-occ
AT TP(time-24))

InstigatorOf #022 #24,
#27

(EVENT ("#32 is true")
has-occ AT TP(time-
18))

#32

11 #2 (EVENT("#37 is
asserted") has-occ
AT TP(time-28))

ChecksumOf #022 #34,
#27

(EPISODE("#37 is
true") has-occ SINCE
TI(time-26))

#37

is invoked automatically by a preset mapping of the website’s URL to this compo-
nent.

Rather than defining separate actions for each individual webpage out of which our
website is built, we used the HTTP parameter-value mechanism to process requests for
specific web pages such as the ‘Papers’ or ‘Presentations’ web pages. The same in-
dexAction retrieves the user request page parameter (e,.g. ?page=presentations) and sets
the path of the requested page which is later used by the index.phtml file to load the file
for rendering.

The layout of our website is pre-programmed in the main.phtml file which contains a
space in which the contents of the requested web page are copied together with the IUI
obtained through the communication with the RTS.

The content files are stored as PHP documents with a phtml extension but are en-
coded in pure HTML without any PHP code. All content files are stored on the server in
a designated path based on the filename and a version number. This setup allows the
page owner to manage versions in a detailed way: depending on what he changes pre-

 Interdisciplinary Ontology Conference 2009 9

cisely, he can decide to consider the content file to be new or the same (though of
course changed), and in the latter case to be of a new version or not. Thus files and
contents, as continuants under the realist agenda, endure over time while undergoing
changes or give rise to new files.

Web Browser

Web Server

Oracle DB

Zend Framework

RTS

MiddleWare

RtuWebStat

IndexController

Web Pages stored
by version

Index.phtml

main.phtml

Index.php

Fig.1: RTU Website implementation Architecture

4.2 Steering the RTS

The middleware component is informed about changes in a server page by means of
the HTML ‘input’ tag inside the corresponding content file. This tag is coded with
the type value ‘hidden’ which instructs the browser not to render its content on the
screen. This tag carries the following application specific attributes:

• currentIUI: contains the IUI for the content file and is always set by the
middleware component;

• previousIUI: is set by the page author and contains the IUI of the content
file from which the content of the current page is derived;

• newNameForPreviousFile: is set by the page author to be the new name of
the content file from which the current web page is derived. This attribute is
part of the versioning mechanism as it allows to retain an older version un-
der a new name. An alternative would have been to let the older version
keep its name, and to assign a new name to a new version, but this would
require to use (possibly very long) HTML-encoded redirection chains to en-

Keio University Press Inc. 2009

10 Werner Ceusters and Shahid Manzoor.

able links stored externally (for instance in a visitor’s favorite links collec-
tion) to lead automatically to the newest version.

• previousVersion: is set by the page author to contain the version number of
the content file from which the current content page is derived and judged to
be a new version.

When a web page is created for the first time, these attributes are left empty.
It is the middleware component that does all the processing related to the assignment

of IUIs to the particulars involved in a web request after receiving the contents of the
requested web page from the layout view component of the Zend Framework.

When processing the server page, the middleware component checks whether the re-
quested web page needs to be assigned an IUI. Its decision is based on the value set for
the currentIUI attribute: when empty, the server page has to be assigned an IUI. In case
this attribute has already a value, the component recalculates by means of the md5-
algorithm an 128-bit checksum and verifies whether it matches the checksum that was
assigned to it when the file was created. Any difference indicates a modification to the
contents of the file. The middleware component is set up in such a way that this event
triggers the assignment of a new IUI. In this case it sets (1) the value of the previousIUI
attribute as the value of currentIUI attribute and (2) the value of currentIUI empty. Then
starts a communication session with the RTS to perform the following steps:

1. it requests the RTS to generate a new IUI for the modified content;
2. it puts that IUI in the currentIUI attribute of the input tag,
3. it starts the checksum-related processing for the web page which consists of:

a. calculating the checksum over the content,
b. adding the checksum as a hidden variable to the server page,
c. requesting the RTS to generate an IUI for the checksum,
d. storing the checksum and the corresponding IUI in a database table,
e. instructing the RTS to insert a PtoP-tuple representing that the

ChecksumOf relation holds between the checksum and the server
page,

4. it requests the RTS to insert a PtoN-template indicating the name of the con-

tent file,
5. if previousIUI is not empty but previousVersion is empty, it requests the

RTS to insert a PtoP-tuple stating that the DerivesFrom relation [Smith et al.
2005] holds between the current and previous content,

6. if both previousIUI and previousVersion are not empty, it requests the RTS
to insert a PtoP-tuple stating that the newVersionOf relation holds between
the current and previous content,

7. it saves the content file on the web server.

 Interdisciplinary Ontology Conference 2009 11

Generating the browser page is achieved by performing the steps described in detail
in section 3.1.

5 Discussion

The Referent Tracking enabled RTU website went life in September 2008 but is
nevertheless still work in progress; several computational and philosophical chal-
lenges, some not anticipated, are still not fully addressed.

5.1 Computational issues

From a computational perspective, there is the massive growth of the RTS database:
in its current implementation, one visitor request leads to the generation of 12 RT-
tuples. An update of a server page leads to 15 new RT-tuples which includes the
reformulation of existing tuples based on the changes in reality that have occurred. It
is very likely that when our insight in the ontology of information artifacts grows, as
well as in the various ways in which pieces of information, depending on how and
what they represent, age over time, so also will increase the number of RT-tuples that
need to be generated.

As an example, when by means of a PtoN-tuple it is asserted that a name is assigned
to an entity, then it is specified that the name is applicable since the datetime the name
was assigned. If in the RTS that entity was already stated to have a name associated
with it, then that earlier name assignment was of course also done by means of a similar
PtoN-tuple for the previous name of that entity. But when the new name is assigned,
that already existing PtoN-tuple does not correspond with reality anymore. Because one
of the principles of RT is to generate a faithful representation of reality throughout
reality’s entire (registered) history, that tuple must be ‘retired’, where ‘retired’ means:
that what is described by the tuple was true at that point in time, but is not true anymore.
This is achieved by adding an appropriate D-tuple to the RTS [Ceusters, 2007]. A new
PtoN-tuple, still about the previous name, will then be generated to represent that the
previous name was valid from the time that name was assigned, until the time the new
one was assigned.

A computational problem we had not foreseen was the behaviour of some crawlers
after visiting our website. Some crawlers, including alert generators, keep track of the
frequency with which pages are updated: the more frequent a page is updated, the
sooner they revisit the website. Being ‘updated’ for such crawlers means: the file found
at the URL during the latest visit is not exactly the same as the one found during the
previous visit. But since crawlers, as any other visitor to the RTU website, receive
browser pages, they never receive a file which is identical to any previous file because
browser pages carry a unique identifier which is each time distinct from any other iden-
tifier. As a result, we detected at least one crawler that spent days on visiting – and
revisiting – our site. This might seem to be attractive if one is interested in generating

Keio University Press Inc. 2009

12 Werner Ceusters and Shahid Manzoor.

frequent visits to the site, but at the other hand, it overloads the RTS with tuples that are
not really relevant, thereby – perhaps – violating one of the principles of RT itself.

Fig.2: Network view of (part of) the RTU website’s RTS showing how the content of one page changed over
time and which IP addresses received a browser page generated from these contents

Another challenge, well known in computer science circles, is how to visualize the
results in a user-friendly way. Figure 2 shows a typical network graph, in this case con-
cerning the changes over time of the content and name of content pages, as well as the
IP addresses from which requests concerning that page were issued. IP addresses from
which our site seems to be monitored can be spotted easily as they have connections to
more than one content node (i.e. the nodes which a large number of links). But visualiz-
ing in this way the entire history of a site, will lead to the well-known hairball problem.

5.2 Ontological issues

The goal of the project forces us to have a good understanding of information arti-
facts, and in particular digital information artifacts. It is thus no surprise that the
project runs in parallel with the Information Artifact Ontology initiative that has
recently been set up but thus far is mainly focused on the data representation needs in
the context of clinical trials (Ruttenberg et al. 2008).

One issue is the lack of clear ontological criteria for what constitutes a change in
content versus new content. Another one is how this relates to the coming into being of
a new content file versus the modification of an existing one. A third issue is how to
characterise and define the distinct sorts of content that need to be differentiated.

 Interdisciplinary Ontology Conference 2009 13

Imagine that a researcher maintains his vita on his laptop and that this document has
the name ‘my-vita’. If registered in a RTS, that document would be assigned an IUI,
and possibly also its content. When the researcher wants to add to it, he opens that
document, adds a few lines, saves it and then closes it. In this case, we would argue that
no new document is involved, but that the document in question underwent a change,
and so its content. Thus in terms of the OBO Relation Ontology [Smith et al. 2005]
there would be two transformations. If however the researcher saves the result of his
editing as a new file, then that file would be some sort of derivation from the other file.
But what about the content? Because saving the document as a new one does by itself
not change anything about the content, one could argue that the ‘new’ content is also a
transformation of the ‘old’ content, which is saying that it is still the same content that
underwent a change.

Now imagine that the researcher copies the ‘my-vita’ file, assigns the name ‘my-
own-vita’ to it, and then opens in his word processor the ‘my-vita’ file with the goal to
replace the sentences describing his scientific life with those describing his fellow re-
searcher’s scientific life. He does this because his friend is not good in dealing with
computers. Moreover, because he invested already a lot of time in setting up a nice
layout for his own vita, it is easier to maintain this layout by pasting ‘new’ information
over the existing one, than to build his friend’s vita from scratch. He also keeps the
filename the way it is, because, when delivered to his friend, the name ‘my-vita’ will
make perfectly sense to that friend.

The actions performed in editing under this new scenario the same document as be-
fore, are not different than under the first scenario. However, it is this time not so clear
that there are arguments to say that a transformation is involved: perhaps for the file (as
long as we are talking about the file on the laptop, and not a copy of it on another car-
rier), but for sure not for the content. So where are the boundaries to be drawn? It is
only by answering these questions that we will be able to give a formal definition for
relations such as MainContenCopyOf and DerivesFrom in the context of digital infor-
mation artifacts rather than the intuitive use we currently make of them.

Another issue to be dealt with is an appropriate treatment of time. A good basis is of-
fered by [European Committee for Standardization 2005] which is a standard for de-
scribing states of affairs in relation to time. The central notion is that of ‘situation’
which is defined as a ‘phenomenon occurring (or having the potential to occur) at or
over a time in a given world context’. The representation of a situation in a language is
called a ‘predication’. That part of a predication that is free from a temporal expression
is called a ‘propositional clause’. Thus in the predication ‘IUI #22 was assigned July 4,
2008’ the part ‘IUI #22 was assigned’ is a propositional clause.

The standard proposes a semi-formal syntax which forces the author of a proposi-
tional clause to be explicit about whether the clause denotes a situation considered to
occupy a time interval (therefore labeled ‘EPISODE’), a situation considered to occur at
a time point (therefore labeled ‘EVENT’), or whether he is agnostic about it (‘SIT’).
These labels are used in the temporal attributes of the RT-tuples (see Table 2) whose
values conform to the standard completely. The expressions – still following the provi-

Keio University Press Inc. 2009

14 Werner Ceusters and Shahid Manzoor.

sions of the standard – contain also ‘temporal comparators’ to express temporal rela-
tionships which are inspired by Allen’s calculus [Allen 1984].

However, the standard does not give indications on what from an ontological per-
spective makes sense to express. An illustrative example of the sort of problems one
can face in this context is offered by PtoP-tuple #32 (Table 2). In this tuple it is asserted
that the relationship InstigatorOf holds between request message #24 and browser page
#27 at time-18, i.e. the time the message was received by the middleware component.
But at that time, the browser page did not yet exist. Thus if A causes B – InstigatorOf is
a sort of causal relationship – at what time would the causal relationship then hold?
Addressing these issues is part of the work that needs to be carried out, not necessarily
just by us, but by the ontology community in general.

6 Conclusion

By implementing a Referent Tracking enabled website, we have been able to give a
concrete example of the benefits that the Referent Tracking paradigm has to offer.
The use of unique identifiers combined with checksums for verifying the content-
integrity of web pages holds promises for a safer and more reliable web. Our effort
also demonstrates the feasibility of working with IUIs in an almost completely
autonomous way, thus providing an answer to the question often brought up by RT
sceptics: ‘who has the time to request IUIs and to specify all these relationships?’ As
we have demonstrated earlier in the context of linking electronic health records to a
RTS as well [Manzoor et al. 2007; Rudnicki et al. 2007], many assignments and
representations can be generated automatically. More work is still to be done, and
many questions are left open. Answering these questions will not only be valuable
for our own endeavour, but also for ontological research in the domain of informa-
tion artifacts.

References

[Allen 1984] Allen, J. F. (1984). Towards a general theory of action and time. Artificial Intelligence, 23, 132-
154.

[Ceusters 2007] Ceusters, W. (2007). Dealing with Mistakes in a Referent Tracking System. In H. KS (Ed.),
Proceedings of Ontology for the Intelligence Community 2007 (OIC-2007) (pp. 5-8). Columbia MA.

[Ceusters et al. 2006] Ceusters, W., Elkin, P., & Smith, B. (2006). Referent Tracking: The Problem of Nega-
tive Findings. In A. Hasman, R. Haux, J. v. d. Lei, E. D. Clercq & F. Roger-France (Eds.), Studies in
Health Technology and Informatics. Ubiquity: Technologies for Better Health in Aging Societies - Pro-
ceedings of MIE2006 (Vol. 124, pp. 741-746). Amsterdam: IOS Press.

[Ceusters & Manzoor 2009] Ceusters, W., & Manzoor, S. (2009 (in press)). How to track Absolutely Every-
ting? In L. Obrst, W. Ceusters & T. Janssen (Eds.), Ontologies for Intelligence. Amsterdam: IOS Press.

 Interdisciplinary Ontology Conference 2009 15

[Ceusters & Smith 2005] Ceusters, W., & Smith, B. (2005). Referent Tracking in Electronic Healthcare Re-
cords. In R. Engelbrecht, A. Geissbuhler, C. Lovis & G. Mihalas (Eds.), Connecting Medical Informatics
and Bio-Informatics. Medical Informatics Europe 2005 (pp. 71-76). Amsterdam: IOS Press.

[Ceusters & Smith 2006a] Ceusters, W., & Smith, B. (2006). A Realism-Based Approach to the Evolution of
Biomedical Ontologies. In Proceedings of AMIA 2006 (pp. 121-125).

[Ceusters & Smith 2006b] Ceusters, W., & Smith, B. (2006). Strategies for Referent Tracking in Electronic
Health Records. Journal of Biomedical Informatics, 39(3), 362-378.

[Ceusters & Smith 2007a] Ceusters, W., & Smith, B. (2007a). Referent Tracking for Corporate Memories. In
P. Rittgen (Ed.), Handbook of Ontologies for Business Interaction (pp. 34-46). New York and London:
Idea Group Publishing.

[Ceusters & Smith 2007b] Ceusters, W., & Smith, B. (2007b). Referent Tracking for Digital Rights Manage-
ment. International Journal of Metadata, Semantics and Ontologies, 2(1), 45-53.

[European Committee for Standardization 2005] European Committee for Standardization. (2005). EN
12388:2005. Health informatics - Time standards for healthcare specific problems.

[Fowler 2002] Fowler, M. (2002). Patterns of Enterprise Application Architecture: Addison-Wesley Profes-
sional.

[Grenon 2003] Grenon, P. (2003). Nuts in BFO’s Nutshell: Revisions to the Bi-categorial Axiomatization of
BFO (Technical Report). IFOMIS Reports: Institute for Formal Ontology and Medical Information Sci-
ence.

[Manzoor et al. 2007] Manzoor, S., Ceusters, W., & Rudnicki, R. (2007). A Middleware Approach to Integrate
Referent Tracking in EHR Systems. In Teich JM, Suermondt J & H. C (Eds.), Proceedings of the Ameri-
can Medical Informatics Association 2007 Annual Symposium. Biomedical and Health Informatics: From
Foundations to Applications to Policy (pp. 503-507). Chicago IL.

[Rudnicki et al. 2007] Rudnicki, R., Ceusters, W., Manzoor, S., & Smith, B. (2007). What Particulars are
Referred to in EHR Data? A Case Study in Integrating Referent Tracking into an Electronic Health Record
Application. In Teich JM, Suermondt J & H. C (Eds.), American Medical Informatics Association 2007
Annual Symposium Proceedings, Biomedical and Health Informatics: From Foundations to Applications
to Policy (pp. 630-634). Chicago, IL.

[Ruttenberg et al. 2008] Ruttenberg, A., Smith, B., & Ceusters, W. (2008). Information-Artifact-Ontology.
Retrieved December 10, 2008, from http://code.google.com/p/information-artifact-ontology/

[Smith et al. 2005] Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., et al. (2005).
Relations in biomedical ontologies. Genome Biology, 6(5), R46.

[Smith et al. 2007] Smith, B., Ashburner, M., Ceusters, W., Goldberg, L., Mungall, C., Shah, N., et al. (2007).
The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature
Biotechnology, 25, 1251-1255.

 [Zend 2009] Zend Technologies Ltd. (2009). Zend Framework: The Official Programmer’s Reference Guide:
Apress.

