

THE REFERENT TRACKING SYSTEM AS A PEER 2 PEER APPLICATION

Shahid MANZOOR, M.Sc.1, Werner CEUSTERS, M.D.1, Ron RUDNICKI, M.A.1,
Robert ARP, Ph.D.2

1New York State Center of Excellence in Bioinformatics & Life Sciences,
University at Buffalo, NY, USA

2National Center for Biomedical Ontology, University at Buffalo, NY, USA

ABSTRACT
A Referent Tracking System (RTS) is an application that
manages a database containing data that represent real
world entities, where each such entity is assigned a
singular and globally unique ID. The application stores
references to: (1) individual entities that exist in reality,
(2) the relationships that obtain between these entities,
(3) the universals instantiated by these entities and (4)
terms from terminologies used in their description. In this
paper, we describe the architecture of an RTS application,
built by using the Peer 2 Peer (P2P) paradigm, that
enables the data to be shared over distributed Peers
running at geographically different locations.

KEY WORDS
Medical Informatics, Knowledge-based Systems and
Peer-2-Peer Application.

1. Introduction
Referent Tracking (RT) was introduced in 2005 to avoid
ambiguities that arise while referring to entities in
Electronic Health Record (EHR) statements despite the
use of terms drawn from standard terminologies such as
SNOMED CT.[1] For example, in statements originating
from two distinct encounters with the same patient, the
use of the SNOMED CT code 71620000 (fracture of
femur) by itself does not resolve the ambiguity whether
reference is being made to one fracture or to two distinct
fractures of the same type. RT resolves such ambiguities
by assigning singular and globally unique identifiers -
called Instance Unique Identifiers (IUIs) - to the
particular entities referred to in reality. Thus if the patient
suffers (or has suffered) from two distinct fractures, then
these fractures are referred to by two different IUIs, even
if the two fractures are of exactly the same type, and, as a
consequence, are described by means of the same
SNOMED CT code. If, in contrast, only one single
fracture is being documented during distinct encounters,
then only one IUI would be used. RT thus advocates an
all-encompassing use of IUIs, not only assigning them to
individual patients, but also to their body parts, disorders,
diagnoses, and the physicians who treat them.

Data in RT consist of statements in the form of tuples (see
Table 1), where each statement represents a fact – modulo

the occurrence of errors for instance introduced because
of a false belief – about at least one particular in
reality.[2-4] Consider, for example, the following tuples:

 A1: <IUI-1, IUI-2, 2/8/2008>
 PtoN1: <IUI-1, 2/8/08, name, John, IUI-2, 2/8/08, IUI-3>
 PtoC1 <IUI-1, 2/8/08, SNOMED CT, 116154003,
 IUI-2, 2/8/08>.

Table 1: RT Tuples
Representation

Name
Attributes Set

Description
A-tuple < IUIa, IUIp, tap>
Act of assignment of IUIp to a particular at time tap by the
particular referred to by author IUIa
D-tuple < IUId, IUIA, td, E, C, S >
A D-tuple is inserted (1) to resolve mistakes in RTS, and
(2) whenever a new tuple other than D is inserted in the
RTS. The particular referred to by IUId registers the
particular referred to by IUIA (the IUI for the corresponding
A-tuple) at time td. E is either the symbol ‘I’ (for insertion)
or any of the error type symbols (insert ref to my OIC-2007
paper). C is the reason for inserting the A-tuple. S is a list
of IUIs denoting the tuples, if any, that replace the retired
one.
PtoP-tuple <IUIa, ta, r, IUIo, P, tr>
The particular referred to by IUIa asserts at time ta that the
relationship r from ontology IUIo obtains between the
particulars referred to in the set of IUIs P at time tr.
PtoU-tuple <IUIa, ta, inst, IUIo, IUIp, UUI, tr>
The particular referred to by author IUIa asserts at time ta
that the particular referred to by IUIp instantiates inst
relation from ontology IUIo with the universal UUI at time
tr.
PtoC-tuple <IUIa ta, IUIc, IUIp, CUI, tr>
The particular referred to by IUIa asserts at time ta that it is
annotated by concept code associated with CUI from
terminology system IUIc at tr,
PtoU(-) -tuple <IUIa, ta, r, IUIo, IUIp, UUI, tr>
The particular referred to by author IUIa asserts at time ta
that the relation r of ontology IUIo does not obtain at time tr
between the particular referred to by IUIp and any of the
instances of the class UUI at time tr.
PtoN < IUIa, ta, ntj, ni, IUIp, tr, IUIc>
The particular referred to by IUIa asserts at time ta that ni is
the name of the nametype ntj used by IUIc to denate the
particular referred to by IUIp at tr.

632-077 112

debbie
New Stamp

These tuples express that the author whose IUI is IUI-1
asserts on Feb 8, 2008 that the entity referred to by IUI-2
is a patient (as indicated by the SNOMED CT code
116154003 to which is associated the term ‘patient’)
whose name ‘John’ is used in IUI-3 (which stands for the
USA) and that these descriptions are (believed to be) true
on the same date.

In 2007 we built a Referent Tracking System (RTS)
prototype which manages RT tuples in a database.[5] The
RTS was developed as a client-server application, where
an RTS client could be either an EHR application calling
the services directly, or a middleware application
communicating with the RTS server on behalf of the EHR
application.[6] The RTS server provides its interface via
web services that, for instance, insert a new RT tuple in
the database (e.g. ‘createParticularRepresentation’,
‘createPtoN’, and ‘createPtoP’), or which search tuples
(e.g. getParticularRepresentation’, ‘getPtoN’, and
‘getPtoP’).

2. Objectives

Because the key idea in RT is making reference to entities
in reality by means of singular and globally unique
identifiers, the optimal set up would be one in which only
one RTS would be used worldwide. More realistically,
however, is the adoption of the RT paradigm in a step-
wise fashion: each healthcare related institution will first
install its own RTS, and afterwards connect them in
expanding networks.

To support this evolution, we developed a new version of
the RTS which is built upon Peer to Peer (P2P)
technology, enabling data sharing in such a way that a
search query can be executed concurrently over
distributed RTS servers (peers). In an RTS P2P network a
client thus sends a query to an RTS server which besides
executing the query itself can forward it to other
connected RTS servers for subsequent execution. Each
peer then collects the results and sends them to the
requesting peer. Finally, the RTS server who received the
initial request returns the aggregated results to the client.

Furthermore, an RTS P2P application is capable of
database load sharing over multiple RTS server peers
such that the network behaves as a singular database. This
capability is useful in cases where a very large database
cannot be hosted on a single machine, for instance
because of computational limits.

3. Material & Methods

P2P architectures can be implemented by means of any
programming language which has network programming
capabilities. Some P2P applications, for example, are
implemented by using web services. However, such an
approach requires the announcement of each peer and its
services to the other peers by means of a centralized

server such as a UDDI repository.[7] But if the immediate
adoption of one global RTS is unlikely, so also is the
adoption of one worldwide UDDI server.

JXTA is another platform, introduced recently, that is
specifically designed to build P2P applications and that
consists of a set of protocols that are independent of any
programming language.[8] It has built-in capabilities for
discovering a new peer in a network, for authenticating
users, and for ensuring secure communication. The JXTA
community has implemented JXTA protocols as an API
for three environments: Java standard edition, C/C++, and
Java Micro Edition. We have adopted the JXTA API for
the Java standard edition.

JXTA protocols are centered around the architectural
construct of a ‘group’ which stands for a collection of
peers using a common, agreed-upon set of services. A
‘group’ is identified by a Globally Unique ID (GUID).
All of the JXTA services, e.g. group membership,
Input/Output pipes (streams), messaging, etc., are
accessible in the context of this group. Each system in a
JXTA network is required to join a group to access its
services. The group membership can be authenticated by
a user ID and password. A peer can only join a group
when it knows the group GUID, user ID, and password.
A JXTA network can have more than one group, and a
peer can be a member of more than one group.

4. Results
4.1 RTS P2P Application

Our application design is a mix of client-server and P2P
programming models. The RTS P2P network consists of
several RTS peers of three distinct types: (1) RTS Server
Peers that only execute the queries (as a central server)
received from other network peers, (2) Proxy Peers which
function as clients of Server Peers and which provide
interfaces as a Java API (by implementing JXTA
protocols) to RTS clients, and (3) ServerProxy Peers that
act as a combination of Server Peers and Proxy Peers by
first accepting and executing query requests from other
Proxy Peers and then forwarding the queries to other
Server Peers. The RTS clients, typically EHR clients, do
not need to know about the JXTA protocols: they just
have to call the API methods of their Proxy Peer to send a
query, which forwards the query to the connected RTS
Server Peers.

An example of the RTS network is shown in Figure 1,
where two health care institutes, A and B, are running
their own RTS peers. The peers with dotted background
are installed in such a way that they are not directly
known outside their corresponding health care institute’s
environment. In Health Institute A, the three Server Peers
(with dotted background) are alike in all respects and
implement the objective of distributing a very large
database load. When an EHR client (in health institute A)
sends a search query to the Proxy Peer, it forwards the

113

query to the three Server Peers which concurrently
execute the query and return the results to the Proxy Peer
that finally sends the results to the EHR client. For public
access to each health care institute’s data, the separate
peers (with gray background) are installed. The idea of
separating the peer advertisement in local (within a health
institute) and public (outside the health institute) contexts
is to build a security layer. The peers which are known
locally provide full access to the local database, and the
peers which are known publicly provide very restricted
access to the database (e.g., they might, for instance,
allow only searches over PtoN tuples).

Figure 1: An Example of an RTS P2P Network

In Figure 1, the scope of the peers (i.e., local and public)
is delimited with the help of the JXTA group construct.
Each institute can form its own local group whose
membership (shown by solid lines) is not known outside
their corresponding health care institute environment, and
which protects against unauthorized access to the peers in
the group. There is also a public group of which both
health care institutes are aware (whose membership is
shown by dotted connection lines).

4.2 RTS P2P Application Architecture

In Figure 2, our P2P application architecture is
schematized to be composed of several component layers,
where arrows indicate the direction of the information
flow. The Client Side layer contains the RTS Client (these
could be third party EHR applications or middleware
components), which sends a query to a Proxy Peer in the
network layer that forwards the request to the appropriate
RTS server in the network. During the execution of the
query, the RTS server calls the services of the RTS core
API to retrieve the results from the RDBMS databases
that constitute the data source layer.

Figure 2: RTS P2P Architecture

4.3 RTS Core Layer

The RTS Core layer implements the business logic of RT,
namely, the insertion and retrieval of RT tuples in a
database. We have used the existing RTS Alpha 1 source
code[9] to build this layer, and made modifications such
that we have split the RTS database into two database
applications: the IUIRepository and the RTDB. The
IUIRepository database manages the statements about the
assignment of IUIs to particulars, and provides a central
repository of IUIs to the RTS. The RTDB is a database of
statements representing the detailed information about
particulars, examples being ‘#IUI-1 instantiates the
universal Person’ and ‘#IUI-1 has the name “John”.’

The IUIRepository and RTDB components are
implemented as Java APIs. The IUIRepository contains
services to search particular representations and to insert
new ones in its corresponding RDBMS. Similarly, the
RTDB components provide API get methods (e.g.,
getPtoN, getPtoP etc.) to search and create methods (e.g.,
createPtoN and createPtoP, etc.) to insert tuples in its
database.

The IUIRepository and RTDB components are
implemented independently of any specific RDBMS (e.g.,
MYSQL, HSQL). RDBMS support is controlled by an
RDBMS specific driver component. Currently, we have
implemented drivers for MYSQL and HSQL.

4.4 RTS Network Layer

The network layer provides the communication services
to send or receive messages over a network. In this layer,
the Server and Proxy components use internally the
JXTA protocol for communication, and run within the
scope of a group. A Proxy Peer component can
communicate with a Server Peer component only when
both components are members of the same group.
Furthermore, if a peer in a health institute provides server
services for two groups, then it has to run the Server Peer
component for each group.

RTS Server

RTS

EHR Client

RTS RTS Server

Health Institute A

RTS
RTS
RTS
RTS
RTS
RTS

RTS Server

RTS

EHR Client

Health Institute B

RTS
RTS
RTS
RTS
RTS
RTS

RTDB IUIRepository

RDBMS RDBMS

Server

Proxy

RtsServicesFactory

RtsClient

Data Source Layer

RTS Core Layer

Network Layer

Client Side Layer

114

RTS Server:

The server component provides central query execution
services to a Proxy Peer functioning as client. The server
is implemented in a way similar to the Services Oriented
Architecture[10] (based on an idea similar to that of web
services) in which a set of services (similar to remote
procedures) are provided as a query mechanism. The
XML language is used to send both query and results
between peers. Implementing the query mechanism by
using XML avoids making changes in the server and
proxy components as new services are introduced.

Listing 1 shows an example of the createPtoN service
which allows inserting PtoN tuples in the database. The
Name element inside the RtsService element would hold
the name of the service, and the elements inside the
Params element would contain the parameters of the
service. For the sake of simplicity, only two parameters
(‘iuip’ stands for the IUI of the particular for which
statement PtoN is inserted and ‘ta’ stands for the time at
which the PtoN statement is inserted) are shown in this
example.

In our architecture, it is not required that all server peer
installations provide the same set of services. Services in
a server are published via RtsServicesFactory, a Java
interface which returns the list of service handlers where
each service handler is responsible for the execution of a
specific service. Each service handler is implemented as a
Java class which has two Java methods:
getServiceName() and handlService(queryXML).

<RtsQuery>
 <RtsService>
 <Name>createPtoN</Name>
 <params>
 <iuip>IUI-50</iuip>
 <tr>1201890219266</tr>
 …
 </params>
 </RtsService>
</RtsQuery>

Listing 1: An Example of an RTS Service Query

The method getServiceName() returns the name of the
service, e.g., createPtoN, for which this handler is
implemented. The RtsServer component calls this method
to match the service name in the query (which is sent by a
client for execution). If the query name is matched with
getServiceName, then the server calls the handleService
method of this handler.

The handlService(queryXML) method handles the
execution of a service and returns the results in the form
of XML to the server. Then, the server sends the XML,
including its header information (which is used only for
internal purposes between server and clients), to the client
who sent the query.

To publish new services in a server, only the server
configuration file is modified to tell the server about the
availability of the new services implemented as a java
class (implements the java RtsServicesInferace interface).

RTS Proxy:

RTS Proxy is the client side implementation of the RTS
server that provides interfaces to RTS clients which do
not have knowledge about the JXTA. Currently, RTS
Proxy is implemented as a Java API, but it can also be
implemented using web services for those clients that are
implemented on something other than the Java platform.

The output of the proxy client, when querying multiple
servers in a group, is based on the idea of streaming such
that it outputs a result as soon as it receives it from a
server.

Just after building a successful connection to a server, a
Proxy Peer requests a list of services from the Server Peer
(e.g., insertPtoU, getPtoU, getPtoN, etc). The Proxy Peer
uses this information to forward the RTS client query to
the appropriate servers which handle the query. For
example, in Figure 1 one server alone (out of the other
servers with dotted background running in Health
Institute A) handles the createPtoN service and, should a
client request the Proxy Peer to execute the createPtoN
service, the Proxy forwards the service call to that RTS
server which handles the createPtoN service.

We have implemented the Proxy component in such a
way that it need not be changed if a server announces a
new service. Since the service calling mechanism uses
XML as a data format, the proxy component provides a
utility method to build a service query in XML.

5. Discussion
The RTS P2P application described here is built by using
three programming paradigm techniques: Client/Server,
Service Oriented Architecture (SOA), and P2P. In the
Client/Server model, EHR applications (as a client)
running at different departments in a health institute
access the services of a RTS system (running as a central
server). The SOA model gives us the opportunity to use
parameterized remote procedures as a query mechanism,
where a parameter represents query criteria; for example,
the procedure call ‘findPatientByName(“John”)’ finds all
patients whose names are matched with the parameter
“John.” The P2P architecture provides the opportunity to
access the data services of the RTS systems running at
geographically different locations.

The JXTA P2P technique resolves scalability of our
application in terms of:

• Data Magnitude: A very large database can be
distributed over multiple machines, which could
reduce hardware costs.

115

• Performance: Concurrent execution of a query over
multiple machines reduces the query execution
time.

• Security: The JXTA group concept is a very good
security tool because services running in the
context of a JXTA group can only be accessed by
those Peers who are authorized to join the group.
In this way, a group of health care institutes could
form a consortium to share a common set of data
access services (associated with a JXTA group)
from their RTS Server Peers. This design could be
used to prevent anyone outside the consortium
from accessing these services. Our application
allows building such consortiums within a
network.

At the other hand, distributing data geographically has
significant potential issues such as data transmission
costs, current servers and networks performance, amount
of data stored on each peer, available free disk space,
possible administrative constraints (such as restrictions
for remote accesses during high-peak local loading
periods), reducing the number of unnecessary queries and
avoid network congestion, and so forth. These issues
depend on the following factors.

• Data Size in Transmission: any peer-2-peer
application has to bear the data transmission cost
which by the user is primarily experienced in the
form of response time as data flows. The greater
the data size flows in a transmission from one peer
to another peer over a network, the larger the
response time may be experienced. This is because
network bandwidth allows a specific data size to be
transmitted at a time. In our application a peer
could send data ranging from a few kilobytes to
several megabytes. This is in the first place
determined by the policies that a health institute
adheres to in order to provide access to its data to
clients, in addition to load reducing techniques.
Larger size data can be sent into multiple smaller
size data packets or the data size in transmission
can be reduced by providing services that can only
return very specific information about a particular
patient at a time. For example, one can allow to ask
about a specific fracture or tumor of a patient, or a
blood pressure values over restricted time intervals,
rather than ‘give me all that is available’.

• Topology Model: There are different topological

network models available for p2p applications,
each with distinct modes of data centralization.
Most p2p applications are developed for file
sharing systems. In pure p2p systems such as
Gnutella [11] and Freenet [12] all peers have equal
roles in data searching or downloading. In a hybrid
model such as in Napster [13], a central server
provides search capabilities, while downloading

occurs at individual peers. The hybrid model is
more efficient than the pure p2p model as
important data (such as which files exist on what
peers) can be indexed on the central server with the
result that searches can be performed very
efficiently: after a peer executed a search on the
server to retrieve a location for certain data, it
makes direct connection with the peer who has the
data for immediate download. However, if the
central server is inaccessible, then the shared data
are not visible to peers. A model that solves this
problem, is the Superpeer model as implemented in
Kazaa [14] which is a mix of both the pure and
hybrid model[15]. A Superpeer provides
centralized services (as in the hybrid model) to a
subset of peers. Client peers send queries to their
Superpeers and get results from them. A Superpeer
also routes queries to other Superpeers on behalf of
its clients, and then collect results from the other
Superpeers to return them to its clients.

Most jurisdictions have regulations which do not
allow health institutes to publish their patient data
on a public central server. Therefore we have
followed in our implementation the pure p2p
network model. In this model, each participating
health institute has to form a consortium with the
other health institutes with which it wants to share
data. In our model, each peer knows the other
peers in a consortium so that it can make direct
connections with the other peers for querying data.
Furthermore, upon reception of a query, each
public peer only forwards the query in its internal
private network and does not forward the query to
the other public peers. Even under this scenario,
data may only be shared without patient consent if
they are rendered anonymous for instance to search
for finding similar cases with respect to
symptomatology, disease, treatment and so forth.

• Machine Performance: because our implementation
is such that peers make direct connection with the
other peers, failure or slowing down of one peer
does not cause failure of the entire network. In the
worst case, if a public peer of a health institute fails
then the data of that particular institute will not be
available to others. This problem can be handled
by introducing redundant public servers so that in
case the public server fails the second redundant
server will take over the job. The machine
performance is also affected by the sort of
hardware configuration and what RDMBS is used.
The RTS performance was individually tested in
2007 for 1.3 million RT tuples on a desktop
machine (Core 2 duo E6400 processor, 1 GB
RAM, 60 GB hard disk and 5.1 MySQL
database).[5] With the latter settings, a peer
conforming to our implementation would perform

116

well. Improving the hardware configuration, a peer
would perform certainly better.

• Network Performance: Overall network

performance does not depend on one individual
connection amongst two peers; if a network
connection fails between two peers or if there is
congestion at one edge, then that does not slow
down the entire network.

6. Conclusion
An RTS application contains data about the entities
(patients, disorders, body parts, diagnoses, and so forth)
that are referred to in EHR statements. In contrast to
prevailing approaches, RTS data are structured in a way
that mirrors the nature of these entities and their
relationships in reality, rather than how they are classified
in terminologies or reported upon in documents[16]. RT
is therefore capable of providing additional detail that
cannot be exchanged by means of, for instance, HL7’s
Clinical Document Architecture since the latter has no
mechanisms to specify what the data are about[17]. The
use of our P2P application helps thus to achieve the
objective of sharing this sort of detailed patient data
across multiple health care institutes in a secure way.
This, then, would make it possible to further
advancements in building computational systems
concerned with decision-making, patient data analysis,
and data interoperability.

With the use of Service Oriented Architecture, efforts are
being made to produce solutions for the data
interoperability between EHR applications. Such
approaches could leverage our P2P model so as to build
the most robust and dynamic solutions.

References

1. W. Ceusters and B. Smith: Referent Tracking in
Electronic Healthcare Records. Connecting Medical
Informatics and Bio-Informatics. Medical Informatics
Europe 2005Amsterdam, IOS Press, 2005, p. pp. 71-76
2. W. Ceusters and B. Smith: Strategies for Referent
Tracking in Electronic Health Records, Journal of
Biomedical Informatics 2006, 39(3):362-378
3. W. Ceusters, P. Elkin and B. Smith: Referent
Tracking: The Problem of Negative Findings. Studies in
Health Technology and Informatics. Ubiquity:
Technologies for Better Health in Aging Societies -
Proceedings of MIE2006Amsterdam, IOS Press, 2006, p.
pp. 741-746
4. W. Ceusters: Dealing with Mistakes in a Referent
Tracking System. Proceedings of Ontology for the
Intelligence Community 2007Columbia MA, 2007, p. pp.
5-8
5. S. Manzoor, W. Ceusters and R. Rudnicki:
Implementation of a Referent Tracking System,

International Journal of Healthcare Information Systems
and Informatics 2007, 2(4):41-58
6. S. Manzoor, W. Ceusters and R. Rudnicki: A
Middleware Approach to Integerate Referent Tracking in
EHR Systems. Proceeding of AMIA Annual
Symposium2007, p.
7. OASIS UDDI Specification Technical Committee.
UDDI OASIS Standard. [cited 2008 Febuary 26, 2008];
Available from: http://www.oasis-
open.org/specs/index.php#uddiv3.0.2.
8. J. Community. JXTA. [cited 2008 Febuary 26,
2008]; Available from: https://jxta.dev.java.net/.
9. S. Manzoor. Referent Tracking System. [cited 2008
September, 10, 2008]; Available from:
http://sourceforge.net/projects/rtsystem.
10. Prakash M. Nadkarni and R. A. Miller: Service-
oriented Architecture in Medical Software: Promises and
Perils, J Am Med Inform Assoc 2007, 14(2):244-246
11. The Gnutella Protocol Specification v0.4. [cited 2008
October 08]; Available from:
http://www.securitytechnet.com/resource/hot-
topic/p2p/GnutellaProtocol04.pdf.
12. The Free Network Project. [cited 2008 October 08];
Available from: http://freenetproject.org/.
13. Napster LLC Napster. [cited 2008 October 08];
Available from: http://www.napster.com.
14. Sharman Networks. Kazaa. [cited; Available from:
http://www.kazaa.com/us/index.htm.
15. B. Yang and H. Garcia-Molina: Designing a Super-
peer Network. In Proceedings of the 19th International
Conference on Data Engineering (ICDE)Bangalore,
India, 2003, p.
16. R. Rudnicki, W. Ceusters, S. Manzoor and B. Smith:
What Particulars are Referred ti in EHR Data? A Case
Study in Integerating Referent Tracking into an
Electronic Health Record Application. Proceeding of
AMIA Annual Symposium2007, p.
17. B. Smith and W. Ceusters: HL7 RIM: An Incoherent
Standard. Studies in Health Technology and Informatics.
Ubiquity: Technologies for Better Health in Aging
Societies - Proceedings of MIE2006Amsterdam, IOS
Press, 2006, p. pp. 133-138

117

