
Response to reviewers

Ontologies of Dynamical Systems and Verifiable ontology-based computation: A Haskell-based

implementation of a reference tracking system for medical records as a Case Study

Thomas Bittner, Jonathan Bona and Ceusters Werner

----------------------- REVIEW 1 ---------------------

OVERALL EVALUATION: -1 (weak reject)

REVIEWER'S CONFIDENCE: 4 (high)

Scientific or technical quality: 3 (good (middle 1/3))

Novelty or innovation: 1 (not innovative)

Presentation: 3 (good)

References: 2 (important references missing - give details in Review section below)

Recommendation for FOIS Best Paper Award: no

This paper presents a notion of ontology-based computation. The idea of characterizing the correctness and

completeness of an implementation with respect to an ontology (what the authors refer to as a computation

that adheres to the ontology) is an important idea.

The definition of the notion of a computation that adheres to an ontology is a little vague -- what does it

mean to say that data is "well-structured with respect to a given ontology"? Section 3 does not help to

elucidate these ideas.

 The first two paragraphs of section 2.1 were adjusted to specify these ideas more clearly. And

section 3.1 gives an illustration in the context of how to incorporate the BfO categories into the

program…

In the definition of verifiable ontology-based computation, what does it mean to say that "most" code is

pure?

 Since there is not enough space to respond in full, we removed the word ‘most’ … and replaced

it by ‘computation internal to the RT system’

There is one sentence that I find baffling (in Section 4.1, page 12): ``The more expressive the formal

language that is required to specify a formal ontology, the less likely it is that general computation can be

formulated as automated deduction."

This is patently false. A decidable logic (such as OWL) is less expressive, but by definition cannot define

many computable functions, whereas a logic such a FOL is needed to define computable functions and

hence formulate computation as automated deduction.

 We rephrased the sentence to make its intended meaning more clear

On page 4, the authors claim: ``To specify such necessary and sufficient conditions in many cases requires

highly expressive languages which in general lack automatic decision procedures that are provably correct."

Are the authors saying that they are using logics which are more expressive than FOL i.e. are not even

semidecidable? If so, what logics are they proposing?

 there is no space to address the logical specifics. Haskell is weak second order and semi-

decidable. non-termination is addressed by a haskell program being an executable specification of

a computation (understood as a function). This could be addressed in extensor in a journal version

but not here. We put something of a summary at the end of section \subsection{Dynamic systems,

Situation calculus and planing in Artificial Intelligence:

The paper overlooks such classical papers as Green, "Application of theorem proving to problem solving",

IJCAI-69, - Nilsson and Fikes, "STRIPS:A new approach to the application of theorem, proving to problem

solving", - Shanahan, Event Calculus Planning Revisited, which specifically use first-order logic to ``work

every ontologically possible state and state change must be derivable from some initial state by means of

automated deduction". The notion of ontology-based computation is also reminiscent of the notion of the

Ontological Stance. Also, the notion of theory resolution in automated deduction also seems to be related

to ontology-based computation, and should be discussed as Related Work. Ignoring this earlier work

seriously undermines the significance of the contribution.

 we have included a new subsection to address the above … (\subsection{Dynamic systems,

Situation calculus and planing in Artificial Intelligence}). We had to remove the diagram about the

ontology to make space for the new section.

The paper also addresses the role of reasoning with an ontology and dynamic systems. Again, the classical

references to the use of theorem proving for AI planning show how this can be done with suitable

axiomatizations, but the authors do not propose anything in this direction. Instead, they claim that a

functional programming language (namely Haskell) is used as the basis for ontology-based computing.

Overall, the authors do not convincingly demonstrate their claims that a language such as Haskell support

computation only if it is logically and ontologically correct.

 we added a subsection .

Typographical Errors:

Page 12: In the context of ontological computing is is natural should be

In the context of ontological computing it is natural

----------------------- REVIEW 2 ---------------------

OVERALL EVALUATION: 1 (weak accept)

REVIEWER'S CONFIDENCE: 4 (high)

Scientific or technical quality: 3 (good (middle 1/3))

Novelty or innovation: 2 (similar to other work but still somewhat innovative)

Presentation: 2 (needs minor improvements - give details in the Review section below)

References: 3 (nothing missing but irrelevant references present)

Recommendation for FOIS Best Paper Award: no

----------- Review -----------

The article presents a methodology for embedding the ontological invariants defined in a particular

ontology into the Haskell programming language type system, with the purpose of guaranteeing the

ontological consistency of programs written in Haskell to manipulate data that represent information that

respect the chosen ontology.

Although there exist OWL to code generators for languages such as Java, the Haskell translation described

in the paper makes significant use the Haskell's expressive type system, which allows compile-time

verification of the ontological invariants represented using the type system.

Thus, the work described in the article seems to be relevant as an example of Applied Ontology and as an

example of the profitable interaction between two distinct Computer Science areas (Applied Ontology and

Programming Language Theory).

It also presents a novel idea, since no typeful translation from OWL-DL ontologies to Haskell programs

seems to exist yet.

However, the text requires a few improvements, mostly regarding (easily fixable) lack of preciseness and

ambiguity on some parts, as detailed bellow:

1) In page 2, starting on line 5, the phrase “In [5], a methodology, based on...”: the fact that in [5] a

methodology was tested seems to be irrelevant, however the fact that in [5] a methodology was applied to

the EHRs of 570.000 alluded before should be relevant, I believe. If that is the case, the phrase should

probably something like “In [5], a methodology ... was applied to the dataset, ensuring that ...”

 The first phrase is relevant because the methodology is based on Referent Tracking (RT) and

the method proposed here in this paper aims to implement the RT ideas. It is true we did not say

this explicitly at this point, so we corrected that.

2) In page 2, line 10, in the phrase “The work to implement computation in ways ...”, what is the meaning

of computation here? Any algorithm? A pure (impure) Haskell Function? Logical reasoning? Database

queries? All of these?

 We changed this phrase into “The work presented here builds further on these efforts by

introducing a method to write software for processing data in ways that are provably correct with

respect to the semantics specified in the ontology.”

3) Page 2: “For an independent continuant to exist at a time means to be in its current state at that time” has

two readings:

“For an independent continuant (C) to exist at a time (T1) means to be in its current state (state(C,T2)) at

that time (T1)”, where T2 is the present, or

“For an independent continuant (C) to exist at a time (T) means to be in its current state (state(C,T)) at that

time (T)”. If the first one was intended, does it mean that an independent continuant always exists at the

same state? If the second one is intended, isn't it a trivial assertion: for a thing to exist at a moment it of

course must exist in the state it is at that moment. Given that the next phrase asserts that continuants do

change, I presume that the second interpretation is the one intented.

 We rephrased it.

4) Page 3: “For example, in classical mechanics only processes are permitted that conserve energy (of a

closed system) in that they transform states in ways that conserve the total energy.” would be clearer as

“For example, in classical mechanics, the only admissable processes are those that transform states in ways

that conserve the total energy of closed systems.”

 done

5) Page 4: Replace “To specify such ... requires highly ...” with “The specification of such ... requires ...”

 done

6) Page 5: Consider replacing “Above the ontological importance of the category of states in conjunction

with the role of processes in transforming independent continuants from one state to another state and

thereby creating sequences of states was discussed.” to

“The ontological importance of the category of states in conjunction with the role of processes in

transforming independent continuants from one state to another state was discussed above.”

 done

7) Page 5: change “Logically states are functional relations ...” to “In logical terms, states are functional

relations ...”, or “Logically, states are functional relations ...”

 done

8) Page 6: “Since recursion is the main computational technique, a terminating pure Haskell program counts

as an inductive proof of a theorem. That is, testing a program often counts as a proof of computational

aspects of a program that cannot directly be checked by type inference.”. A provably total (terminating)

Haskell function counts as a inductive proof of a theorem. However, how does testing a program (in general)

counts as a proof of something? Are you trying to argue the relevance of automatic testing tools such as

QuickCheck? Further in the paragraph, you refer to “manual proofs” and “automatic, semi-automatic and

manual techniques of proof”.

What kinds of proofs (and techniques) are you referring to? Machine-verifiable proofs in general? Proofs

encoded through types and functions? Proofs written through a specific theorem proving environment, such

as Agda, Coq, Isabelle, etc?

 this could be addressed in a journal version. good questions though.

9) Page 12: Missing a comma before "as defined above" in “In fact, many current ontologies that support

ontology- based computing as automated deduction as defined above, can specify many of the logical

properties of formal relations only informally in the form of annotations”

 done

10) On page 13 (Conclusions), in “However the function-based nature of Haskell ... may open up ...”, what

are you contrasting the fact that “the function-based nature of Haskell ... may open up ...” with? Such a

constrast seems to be implied by the use of “However” (which also seems to be missing a comma).

In ”may open up possibilities to integrate ontologies into programs that can only be expressed in full first

or higher order languages” I believe you mean “may open up possibilities to integrate (into programs)

(ontologies that can only be expressed in full first or higher order languages)” and not “may open up

possibilities to (integrate ontologies) into (programs that can only be expressed in full first or higher order

languages)”.

 Rephased.

----------------------- REVIEW 3 ---------------------

OVERALL EVALUATION: 1 (weak accept)

REVIEWER'S CONFIDENCE: 4 (high)

Scientific or technical quality: 2 (fair (bottom 1/3))

Novelty or innovation: 2 (similar to other work but still somewhat innovative)

Presentation: 3 (good)

References: 4 (excellent references)

Recommendation for FOIS Best Paper Award: no

----------- Review -----------

The paper describes how the functional programming language Haskell can be used to develop applications

that reason using ontologies. Although the paper is motivated by the authors' referent-tracking approach

to management of temporally oriented information in biomedicine, Haskell is not actually applied in this

application. Indeed, a weakness of the paper is that there is no discussion of the actual use of Haskell to

build any functioning application. Rather, the paper enumerates desirable features of Haskell for the

engineering of verifiable ontology-oriented applications and discusses how the language would support

unique identifiers for universals and particulars. There are no real results reported.

The presentation in the paper is very good, although the English is not always idiomatic. The abstract

emphasizes the need for referent tracking in EHR applications, although there is no evidence that the authors

actually have used Haskell to develop such software. As Haskell will be unfamiliar to many readers, it at

least deserves an explanation in the abstract. The introduction to the paper should make it clear that the

manuscript is not actually about referent tracking.

 Has been addressed

----------------------- REVIEW 4 ---------------------

OVERALL EVALUATION: 1 (weak accept)

REVIEWER'S CONFIDENCE: 3 (medium)

Scientific or technical quality: 4 (very good (upper 1/3))

Novelty or innovation: 3 (innovative)

Presentation: 1 (needs major improvements - give details in the Review section below)

References: 3 (nothing missing but irrelevant references present)

Recommendation for FOIS Best Paper Award: no

----------- Review -----------

This paper presents a notion of ontology-based computing. The basic observation is that within a significant

part of the ontology community ontology-based computing is identified with automatic theorem proving.

The authors introduce a wider notion of ontology-based computing, which requires the input data, the

transformations, and the output to conform to a given ontology. An example is given, which shows how

the subclass hierarchy of an ontology may be used as type-constraints in Haskell.

The idea is interesting and the individual pieces of the paper are well-written. However, there is a significant

mismatch between the title, the abstract, and the introduction on one hand and the rest of the paper. The

title/abstract/introduction suggest that this paper is about a health information system that was tested with

570 000 electronic health records. The introduction discusses further subjects like a top-level ontology of

a dynamic system (based on BFO), domain specific constraints on the possible states of a system, and

referent tracking. All of these subjects are, as far as I can tell, quite irrelevant to the main part of the paper.

No health information system is discussed. Even the examples in section 3 are not really specific to the

health domain, they mainly involve notions from BFO and some temperature related entities. -- Because of

the disconnect between the introductory part and the main part of the paper, readers likely will get wrong

expectations. Further, the explanation and motivation of the real topic of the paper (namely, why we need

the notion of ontology-based computing) is too short. (Section 4.1 provides some of the missing motivation,

but that's in the discussion section.)

 We agree. We therefore made the following changes: (1) We removed the medical records topic

from the title, (2) we changed abstract and introduction to make more clear how the various

elements – Haskell, referent tracking and electronic healthcare records – fit together in the work

we report on.

Section 2.1: clause (a) of the definition of "pure ontology-based computing" is unclear. What is meant by

"specification"?

 we explained this

Section 2.1: the definitions need additional explanation. For example, why is it important that the program

is syntactically and semantically well-formed in a way that can be verified *before* the program runs for

the first time? Why is run-time verification not sufficient? And what does semantically well-formedness

mean?

 done

Section 3: as somebody who is not familiar with Haskell, I found it hard to understand some of the

examples. Of course, the paper is not the place to provide an introduction to the Haskell syntax, but

readability could be improved if the content of the Haskell code would be paraphrased in English.

 there is just no space left to do this ...

Section 4: The paper does not address the limitations of the approach. Can every OWL axiom be turned

into a Haskell type constraint? What about more expressive languages?

 good question for a journal version. type level inference may not be enough. manual proofs may

be needed to show that existential axioms are satisfied. We added a sentence in the paper.

Section 4: The paper discusses the relationship to OWL-DL and whether ontology-based computing is

possible to implement in imperative programming languages. I was surprised that logical programming was

not addressed. Obviously, ontologies have been used within logical programming long before the term

"ontology" (in the computational sense) was introduced.

 again no space to go into that here ...

