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Abstract  

Semantic distance and semantic similarity are two important information retrieval 

measures used in word sense disambiguation as well as for the assessment of how 

relevant concepts are with respect to the documents in which they are found. A 

variety of calculation methods have been proposed in the literature, whereby 

methods taking into account the information content of an individual concept 

outperform those that don’t. In this paper, we present a novel recursive approach to 

calculate a concept’s information content based on the information content of the 

concepts to which it relates. The method is applicable to extremely large ontologies 

containing several million concepts and relationships amongst them. It is shown that 

a concept’s information content as calculated by this method provides additional 

information with respect to an ontology that cannot be approximated by 

hierarchical edge-counting or human insight. In addition, it is suggested that the 

method can be used for quality control within large ontologies. 
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1 Introduction  

Semantic distance and semantic similarity are important measures in concept-based 

information retrieval. They have been used with varying degrees of success in applications 

such as medical coding [1], semantic indexing [2], word sense disambiguation [3, 4] and 

image caption retrieval [5] to mention only a few. Whereas semantic distance measures 

how closely two concepts are topologically related in a semantic network, semantic 

similarity captures to what extent two concepts might represent the same thing. Obviously, 

the two notions are closely related, although not the same. A concept such as “fractured 

arm” should have a very short semantic distance towards “arm fracture”, whereas the 

semantic similarity should be small: a “fracture” cannot stand for an “arm” or the other way 

round. But, to complicate matters, any descent system should be able to compute the 

semantic distance of post-coordinated concepts such as “patient”-WITH-“arm fracture” and 

“patient”-WITH-“fractured arm” as being minimal, and the semantic similarity as being 

maximal. 

Various approaches to calculate both values have been proposed. They tend to fall in two 

categories. Edge-based methods exploit mainly the idea of path-length in a network with or 

without additional weights according to the type of link traversed, whereas node-based 

methods also take into account the probability to find each concept in a large corpus [6]. 

The idea behind them is that the “information content” of concepts occurring often in a 



corpus is lower than of concepts that occur rarely, and that these information-low concepts 

tend to appear higher in an ontology. Recently, a similar idea is introduced in methods that 

are intrinsically edge-based. It tends to capture the feeling that the semantic difference 

between upper level concepts in an ontology is bigger than between lower level concepts 

[7]. The implementation in [7] is entirely based on the hierarchical ISA-relationship. In this 

paper, we expand this idea by taking also into account the associative relationships amongst 

concepts.  

2 Material and methods 

LinKBase® is a large scale medical ontology developed and maintained by the modeling 

team of Language and Computing nv. LinKBase® contains currently over one million 

language-independent medical and general-purpose concepts, linked to natural language 

terms in several languages, including English [8, 9].  These concepts are linked together 

into a semantic network like structure using approximately 450 different link types for 

expressing formal relationships. These relationships are based on logics dealing with issues 

such as mereology and topology [10, 11], time and causality [12] and models for semantics 

driven natural language understanding [13, 14]. Link types form a multi-parented hierarchy 

on their own. It is very important to note that in LinkBase® the formal subsumption 

relationship covers only about 15% of the total number of relationships amongst concepts. 

As such, LinkBase® is a much richer structure than terminological systems in which term-

relationships are expressed as strictly “narrower” or “broader”. Important to note also is 

that LinkBase® is a “living” ontology, in which data are changed on a daily basis, and at a 

rate of 2000 to 4000 modifications a day. Moreover, it is not required for concepts added to 

be perfectly modeled from the very beginning [15].  

We defined the initial information content (IC0) of a concept in LinkBase® as:  

k : IC0(Ck) = 1 + i
(LW(Li)*IC0(Ci))          (1) 

where Ck is the source concept, Ci the target concept, LW(Li) the link weight of the link 

between Ck and Ci, and the sum is going over all the outgoing concepts of Ck. 

We defined the initial link weight (LW0) of a link type as: 

k : LW0(Lk) = 1 + i
(LW0(ParentLinki(Lk)))          (2) 

where the sum goes over all the parents of link type Lk. 

From these formulas it follows that the IC of individual concepts can only be found by 

setting up and subsequently solving a (huge !) system of equations, i.e. one per concept in 

the ontology. Once all values computed, they were normalised using a straight line in the 

range of 0 to 1. We used the following function for the IC’s: 

 := IC ( ),C a
( )IC

0
C

a
where a = max(IC0(Ck)), k          (3) 

and we used this function to normalize the LW’s: 

 := LW ( ),L a
( )LW

0
L

a
where a = max(LW0(Lk)), k          (4) 

An algorithm was designed to compute the IC’s in real time, taking advantage of the 

network-structure of the ontology. 



A first analysis of the results was carried out by comparing the information content ranking 

of the algorithm with those of human judges. All concepts containing the substring 

“tachycard” as part of their knowledge name were extracted, ranked alphabetically, and 

given to the ontology modelers (medical doctors with at least one year experience in 

ontology building). Their task was to rank the concepts according to their subjective 

information content. The results of the evaluators were then compared with those of the 

algorithm. The null-hypothesis for this analysis is that there would be no difference 

between human judges as a group, and the automatic ranking based on IC. 

A second analysis involved a comparison of the depth of a concept in the hierarchy with 

respect to its computed IC value. For the IC to fulfill its purpose, there should be no 

complete correlation. 

3 Results 

The program ran on an Intel Pentium 2.4 GHz processor and used approximately 600 MB 

of RAM memory. It took about 15 minutes to calculate the 450 link-type weights and the 1 

million IC’s, and also some 10 minutes to store all the concept values in a file, sorted on IC. 

3.1 Evaluation of the ranking experiment 

 

Figure 1 captures the results of the ranking performed by the algorithm (diagonal line with 

diamonds) and the human evaluators (irregular line with squares, based on the overall mean 

of the different human ratings). The third, unmarked line, is the result of a trend analysis 

performed on the human ratings. From this it follows that the upward trend of the ranking 

produced by the algorithm is followed by the human raters, but at a considerable lower 

slope.  

Figure 2 shows the mean rankings of the human raters within a 2 standard deviation 

confidence interval. From this it follows that the human raters made quite different 

assessments of the information content. 

3.2 Correlation between the hierarchical depth of a concept in the ontology and its IC 

Figure 3 shows a scatter plot of the normalized IC’s of the “tachycardia”-related concepts, 

versus the depth according to the ISA-hierarchy. Because the normalised IC’s are very 

small, they were re-scaled using formula 5, for pure visualisation purposes. 
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Figure 1: IC-ranking by algorithm and 

human evaluators 
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Figure 2: inter-rater agreement amongst 

human evaluators 



rescaled IC = -100/log(IC)      (5) 

As can be seen, the hierarchical depth of a concept in the ontology is not the most important 

factor that contributes to the information content. 

Figure 4 gives an impression concerning the distribution of the normalized IC’s on a 

logarithmic scale. Only the first 100 concepts with the highest IC are shown. 

 

     Figure 3: IC/depth plot             Figure 4:  IC distribution 

4 Discussion 

4.1 Algorithm design 

To assess how much information a concept contains about other concepts, we had to set up 

a system of equations. This system was set up by assuming that the information content of a 

concept relates to the sum of the IC’s of the concepts used to describe it, weighted by a link 

type specific value (formula (1)). These link type specific values were calculated in exactly 

the same way, but without a weighting factor (formula (2)). 

A naïve approach to set up the system of equations would be to generate the equation for 

each concept individually and then to use a matrix formalism to calculate the IC for each 

concept. However, given the huge size of the ontology, this would not be sensible. 

We developed a novel algorithm exploiting the fact that generation and partially solving the 

equations could be guided by the structure of the ontology. 

There are two steps in the algorithm. In the first step LW’s are calculated that are used in 

the second step to compute the IC’s of the concepts. 

We start the work with a list of all the link types. For every link type L1 that we didn’t visit 

yet, we calculate its LW by following all the parent link types of this link type, and using 

their LW’s to compute the value of L1 according to formula (2). If the LW of one of the 

outbound link types (say L2) isn’t computed up till now, we calculate the value for link 

type L2 by recursively applying the same procedure that we used for calculating the LW of 

L1, that is, we follow all the parent link types of link type L2, and use their LW’s to 

compute the value of L2, until we reach a link type Li that has no parents. The value for this 

link type Li is 1. After we calculated all the LW’s, we normalize them using formula (4). 

We then work with a list of all the concepts. For every concept C1 that we didn’t visit yet, 

we calculate its IC by following all the outbound links of this concept, and using the 

concept values of these outbound concepts to compute the value of C1 according to formula 

(1). If the concept value of one of the outbound concepts (say C2) isn’t computed up till 
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now, we calculate the value for concept C2 by recursively applying the same procedure as 

for calculating the concept values of C1, that is, we follow all the outbound links of concept 

C2, and use their IC’s to compute the value of C2. This process comes to an end if we reach 

a concept Ci that has no parents. Its value equals 1. After we calculated all the IC’s, we 

normalize them using formula (3). 

There is one condition that must be taken into account: the algorithm we invented iterates 

until it reaches a value that has already been calculated, so this value has not to be 

computed for a second time. However when there are cycles – i.e. paths from a concept 

towards the same concept – in the ontology, we must stop the iteration process for instance 

after n iterations. We are sure that the value of such a concept converges to its ‘real’ value 

if the system of equations is not false. In that case the more iterations the program does, the 

more precise these converging values get. 

But what if the system is false? With values the 6 links as in 

figure 5, the system of equations is not solvable. This is 

because the determinant of the coefficient-matrix of the 

system equals zero. Therefore we can’t use algorithms that 

make use of the inverse of that matrix because the inverse 

doesn’t exist. Such algorithms are for instance Gauss-Seidel 

(GS) or SOR (successive over relaxation) [16]. Both 

algorithms assume that the coefficient-matrix is diagonally. 

The more diagonally the matrix, the faster the solution 

converges. But they fail on situations as in Figure 5. Our 

algorithm handles this situation by calculating the best 

approximation.  

 

4.2 Interpretation of the results 

It was no surprise to us that the modelers’ rankings differed considerably amongst each 

other, as well as with respect to the algorithm’s ranking. Differences amongst modelers 

could be explained most often by inaccurate estimations of the IC of additional criteria 

associated to the concept that appeared to be more central. The IC of the concept “chronic 

tachycardia” was by all modelers correctly judged lower than the IC of “fetal tachycardia”, 

which on its turn was judged lower than for “fetal tachycardia affecting management of 

mother”. But typically, the IC-differences for “chronic”, “fetal”, and “affecting 

management of mother” were seriously underestimated. When informed about these 

differences, some modelers accepted this view without critique, while others judged the 

differences as real but irrelevant, a situation similar as in [17] where only 2 out of 19 

hierarchic relationships generated by a description logic classifier (hence mathematically 

correct) were judged “accurate” enough by human reviewers to be taken into account. 

It was also no surprise that the IC of a concept is relatively (though not complete of course) 

independent from it’s place in the hierarchy. For a given hierarchical depth, the range of 

IC’s is typically large. However, when standard statistical techniques for outlier detection 

were used, the majority of outliers turned out to be the result of inappropriate modeling. As 

such, this method might be useful for quality control. 

5 Conclusion 

We have been able to design a novel algorithm to calculate the information content of 

concepts in extremely large ontologies. The method adds another dimension to the notions 
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of semantic distance and semantic similarity as the calculated IC’s are relatively 

independent from the hierarchical depth within an ontology. Because information content 

has been shown to be an important parameter for accurate information retrieval [5, 7], our 

method might give an important contribution in that field. In addition, we have indications 

that the method can also be used for quality control. 
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