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Abstract. Migrating data from electronic healthcare records (EHR) to data repos-
itories for biomedical research provides an opportunity for the design of extract-
transfer-load procedures that not only make the repository a faithful representation
of what is stated in the EHR, but also of how what is stated in the EHR (may or
may not) correspond to what in reality the statements are about. This includes, for
example, annotating which EHR statements are inconsistent with other statements,
or which statements cannot possibly be true because of what we know about reality.
While one goal of ontologies is to provide background information for determin-
ing the reliability of assertions that have been introduced without using an under-
lying ontology, one goal of Referent Tracking is to make explicit all the implicit
assumptions that need to be taken into account to interpret given data correctly. In
this paper, using Basic Formal Ontology as an example, we explore the potential of
Haskell to implement software that is provably correct with respect to the semantics
specified in the ontology.
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1. Introduction

We embrace a vision according to which any piece of electronic data relevant to the
health of individuals – wherever and for whatever reason or purpose generated – should
instantly be integrated into a constantly growing data pool. Health information systems
(HIS) should therefore be semantically interoperable and permanently linked in a net-
work with components that are aware of all relevant data available. Existing initiatives
(Semantic Web, Linked Open Data, the Internet of Things) provide valuable partial solu-
tions to this end. What is needed in addition are mechanisms to determine and represent
not only (1) how assertions (for instance diagnoses) relate to reality (diseases in patients)
and how changes in the pool of assertions relate to changes in reality and vice versa, but
also (2) the extent to which data are incomplete and inconsistent. As an example, we
examined Electronic Healthcare Records (EHR) of 570,000 patients from Western New
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York to assess the extent to which diagnostic assertions in these records correspond to
disorders in the patients [1]. This analysis uncovered many ways in which the data fail
to represent explicitly what they are supposed to represent. In [2] a method based on de-
sign patterns following the principles of Ontological Realism [3] and Referent Tracking
(RT) [4] was tested to translate a clinical research dataset into a set of Referent Tracking
Tuples. The patterns were created to arrive at a collection of assertions in which not only
the portion of reality described by the dataset and the dataset itself were represented in a
way that mimics the structure of reality, but so also the relations between components of
this dataset on the one hand and the corresponding portions of reality on the other hand.
Although it was demonstrated that RT could handle all idiosyncrasies encountered in the
dataset, it required a thorough understanding of and expertise in applying the underlying
theories of the ontology so as not to make any mistakes. The work presented here builds
further on these efforts by introducing a method that attempts to minimize the risk for
committing mistakes by writing software for processing data in ways that are provably
correct with respect to the semantics specified in the ontology, using the representational
units of the Basic Formal Ontology as an example.

1.1. Ontology and Dynamic Systems

Most top-level ontologies (including BFO [5] and DOLCE [6]) distinguish two classes of
entities according to how they evolve over time. Continuants exist in full at every moment
they exist at all. By contrast, occurrents never exist in full at any point in time. At every
moment in time only a single temporal stage of a given occurrent can be present. Con-
tinuants and occurrents form disjoint categories whose instances are related by formal
(participation) relations. Continuants fall into two categories: ontologically independent
and dependent continuants. Dependent continuants can exist only at times at which they
inhere in some independent continuants and include qualities, roles, and dispositions.

At every moment in time a continuant is in a particular state – its state at that time.
The state at a time is determined by the continuant’s mereological make up at that time
in conjunction with the collection of everything that inheres in it at that time. For an
independent continuant to exist at a time means to be in its current state at that time.
Independent continuants change over time by being at different times in, f.i., different
states, by having different parts and/or by having different entities inhering in them.

To simplify the presentation we will focus on non-mereological aspects of states of
independent continuants. From this simplified perspective, particular states are consti-
tuted by collections of particular qualities/roles/dispositions that jointly inhere in a par-
ticular independent continuant at given points in time. For example, the state of a particle
in Newtonian mechanics is determined by its location in some frame of reference and its
velocity (the rate of change of location). The state spaces are associated with universals
of independent continuants. A state space is the class of possible states an instance of that
universal can be in at a given time. States and state spaces are manifestations of the fact
that only very specific combinations of quality universals, role universals and disposition
universals can jointly be exemplified in a given independent continuant at a given time.
Since state particulars are collections of particular qualities/roles/dispositions, it follows
that state particulars are dependent continuants. State types are instantiated by state par-
ticulars. Examples of state types from physics include the states of (relative) rest, inertial
movement, accelerated movement, etc.
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Processes are occurrents which take the continuants that participate in them from
one state to another state by affecting the mereological structure of the participating in-
dependent continuants and/or affecting the qualities/roles/dispositions inhering in them.
Special classes include processes that create continuants in certain states, destroy contin-
uants or leave the states of the participating continuants unchanged (e.g., [7,8]).

1.2. Biomedical Ontology and Dynamical Systems

In addition to logical and metaphysical constraints at the top level there are domain-
specific constraints on possible states of independent continuants and the processes that
can transform between states. For example, in classical mechanics, the only admissible
processes are those that transform states in ways that conserve the total energy of closed
systems.

As in physics, domain specific constraints restrict what is (onto-)logically possible
to what is physically/chemically/biologically/. . . possible. That is, domain-specific con-
straints on possible states and possible sequences of states find their manifestations in the
laws of physics/chemistry/biology (. . . laws of nature). Domain-specific constraints on
sequences of states naturally extend to constraints on processes and their compositional
structure. In addition to constraints arising from laws of nature there may be constraints
imposed by human conventions: there may be specific conventions on the sequences of
certain treatments in medicine, etc.

1.3. Referent Tracking

While most ontologies and ontology based applications focus on logical interrelations
between universals, ontology also plays an important role in the processing of instance
data (e.g., [4,3]). To illustrate this we use the example of referent tracking (RT) in bio-
medicine [4]. Roughly, while an ontology of a dynamic systems specifies the space of
ontological possibilities, a RT system records actual states, sequences of actual states,
and associated processes within the space of ontological possibilities. In the specific con-
text of bio-medicine the goal of RT is to create an ever-growing pool of data relating to
bio-medical particulars, their states at given times (states of pregnancy, states of elevated
blood pressure) and the changes they undergo over time. Within a RT system, all such
entities and their states are referred to directly and explicitly. In addition, a referent track-
ing system can be set up in such a way that it ensures that all particular entities and their
states that are referenced are at the same time classified with respect to the BFO-based
system of ontologies [4].

1.4. Goals of the Work Presented

It follows from the above that it ought to be part of the domain ontology underlying
a dynamical system to explicate necessary and sufficient conditions that single out the
physically/chemically/biologically/medically/. . . possible states, possible sequences of
states, and associated processes. In the context of referent tracking it will in addition be
necessary to implement decision procedures that compute whether or not such conditions
are satisfied for a given state, sequence, and process. Unless these requirements are met it
is impossible to import data into a referent tracking system in a provably correct way, nor
is it possible to maintain such data in a way that only permits changes that are verifiably
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consistent with previous states and the physical, chemical, biological laws as well as
medical regulations and other rules that constrain admissible changes of states.

The specification of such necessary and sufficient conditions in many cases requires
highly expressive languages which in general lack general-purpose automatic decision
procedures that are provably correct. Our aim is to show how the functional language
Haskell can be used to integrate an ontology that is strong enough to describe medical
reality as a dynamical system and, in addition, to implement computation (decision pro-
cedures) as executable formal specifications [9] in ways that are provably correct with
respect to the semantics specified in the underlying ontology.

2. Methodology

2.1. Ontology Based Computation

A computation adheres to an ontology if (I) the computation accepts as input only data
items that are structured with respect to a given ontology; (II) the computation outputs
only data items that are structured with respect to a given ontology; and (III) the transition
between input and output states that are computable by a program coincide with the
possible sequences of changes portions of reality can undergo according to the ontology.

Logically, a collection of data faithful to reality is a set of ground propositions
(propositions formed by predicate and constant symbols) all of which are true of a given
portion of reality. Such a set of propositions is structured with respect to a given ontology
if and only if on the intended interpretation specified in the underlying ontology: (1) the
sorts of the underlying formal language correspond to the basic categorical distinctions
of the ontology (e.g., particulars vs. universals); (2) unary predicate symbols pick out
sub-categories according to the classification of the underlying ontology, (3) n-ary pred-
icates refer to formal relations recognized by the ontology; (4) as a set of propositions,
the data is logically consistent with the axioms of the ontology.

We use the term of pure ontology-based computing to refer to computation that

(a) is provably correct with respect to some formal specification2 correctness can
be verified using type inference in conjunction with relatively simple inductive
proofs over recursive data structures;

(b) adheres to a given ontology in the sense of points (I – III) above if and only if
it passes the type check, i.e., a program adheres to an ontology if and only if
it is syntactically and type-theoretic well-formed in a way that can be verified
formally in a computationally efficient way before the program runs for the first
time.

These points will be justified and discussed in more detail in Sec. 2.2.
For practical purposes it will occasionally be necessary to include non-pure code that

does not meet the strong requirements in (a) and (b). For example, it may be necessary
to access resources that are not part of the given program, e.g., to use the input or output
functions of the underlying operating system, to read from a database, to input globally

2Formal specifications are formal techniques to describe a computation intended to aid the design and imple-
mentation of algorithms which realize that computation by verifying key properties of interest through rigorous
reasoning tools whereby [10]
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unique identifiers, or to request user input, etc. To accommodate such needs we use the
term verifiable ontology-based computation to refer to computation based on code with
the following properties:

(i) the code that processes the data within the RT system is pure and satisfies (a) and
(b);

(ii) the non-pure code (input, output, user interface) is clearly syntactically and se-
mantically separated from the pure code and can interact with the pure code only
via well-defined interfaces. The well-formedness and the semantic coherence of
the code returned by the non-pure computation can be verified via type inference

2.2. Haskell

In what follows the functional language Haskell [11] is used to realize verifiable
ontology-based computing. Haskell is chosen because it offers the following features:
(1) It features functions as first-order primitives; (2) It has a strong static typing system;
(3) It supports explicit data flow by having immutable data structures and featuring lazy
evaluation; (4) It supports syntactic and semantic features that allow to separate ‘pure’
from ‘impure’ code in a logically well-defined manner.

Functions in Haskell Are First-class Primitives: they may be passed as arguments to
and returned as results of other functions, they may form components of composite data
structures and may be lists of functions. Functions may be stored in records, etc.

The ontological importance of the category of states in conjunction with the role
of processes in transforming independent continuants from one state to another state
was discussed above. Logically, states are functional relations that relate independent
continuants and times to the collections of qualities/roles dispositions that inhere in them
at that time:

State : IC×T → (DC1× . . .×DCn) such that
(c, t) %→ (x1 . . .xn) iff (inheres x1 c t) & . . . & (inheres xn c t)

That is, the particular state of the independent continuant c ∈ IC at time t ∈ T which is
constituted by the particular dependent continuants x1 . . .xn ∈ (DC1× . . .×DCn) is rep-
resented by the map (c, t) %→ (x1 . . .xn). The function State : IC×T → (DC1× . . .×DCn)
as a whole is a natural representation of the state universal instantiated by the particu-
lar states (c, t) %→ (x1 . . .xn). Similarly, processes are naturally represented by functions
of signature P : State1 → State2 mapping states that are instances of the state univer-
sal State1 : IC×T → (DC1× . . .×DCn) (a function) to states that are instances of the
state universal State2 : IC×T → (DC1× . . .×DCk). Sequences of states are functions of
signature SQ : T → State.

Since many of the ontologically significant features of a dynamic system are natu-
rally represented as functions, a language which is designed around the computation of
functions has many advantages for encoding ontology-based computation.

A Strong Static Typing System means that the type inference ensures that there cannot
be any run-time errors caused by type errors once a program has passed the type check-
ing. It follows that to the degree to which one is able to encode ontological constraints
and computation in a way that is amendable to type inference, passing the type check
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at compile time ensures the ontological and computational correctness of the program at
run time. This is particularly important in domains in which errors in information pro-
cessing have particular serious consequences. This will be discussed in more detail in
Section 3.

Explicit Data Flow and Lazy Evaluation ensure that the value of an expression depends
only on its free variables. In contrast to imperative languages free variables are bound
to expressions and not assigned values. Value assignment can be changed. By contrast
variables can be bound to expressions only once. From this it follows that the result of
a function only depends on its arguments. In conjunction with Lazy evaluation (roughly,
parameters of functions are only evaluated as needed) this makes such programs espe-
cially easy to reason about by standard equational reasoning (the kind of reasoning we
all are taught in high school mathematics) [12].

Induction and Recursion An important aspect of functional languages like Haskell is
that most computations involve inductive types – types all of whose values can be con-
structed by mathematical induction such as the natural numbers, lists, trees, etc. For these
kinds of types computation can be realized by recursive functions. Since inductive types
are constructed by mathematical induction, the correctness of computation by recursion
is proved by proofs that essentially use the inductive definitions of the underlying types.
That is, in functional languages the principles of induction and recursion coincide [13].

Since recursion is the main computational technique, a terminating pure Haskell
program counts as an inductive proof of a theorem. That is, testing a program often
counts as a proof of computational aspects of a program that cannot directly be checked
by type inference. Clearly, this feature makes testing much more powerful and a pos-
sible alternative to more general but manual proofs. The combination of automatic and
semi-automatic, and manual techniques of proof maximize the expressive power of the
language by maintaining the requirement of formal verification.

Monads In functional programming, a monad is a structure that abstractly represents
and encapsulates computations defined as sequences of steps: a type with a monad struc-
ture defines what it means to chain operations, or nest functions of certain types together
[14]. This allows for the formal representation of pipelines that process data in steps,
in which each processing step has associated processing rules provided by the monad.
Intuitively, monads can be compared to assembly lines, where a conveyor belt transports
data between functional units that transform it one step at a time [15,16]. Monads are
thus the formal means to implement generic sequential types such as

First do A then do B (possibly using the output of A),
then do C (possibly using the outputs of A and B)

where A, B, and C are (specifications of) computations in ways that the type checker can
determine whether the given sequence of computations is of a certain type.

This capability of abstractly describing computations provides means to separate
‘pure’ from ‘impure’ code in a logically well-defined manner by separating the specifi-
cation of sequences of actions from their execution. Consider the IO monad in Haskell
[11]: A value of type (IO t) is an action/computation that, when performed, may do
some input/output before delivering a result of type t. Actions of type (IO t) are col-
lected and, if executed, executed in the specified sequence after all the pure computations
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have been performed. Explicit data flow ensures that the order of all pure computations is
irrelevant [12] and thus the order of the execution of a program with impure components
only depends on the order of the sequence of its impure components. The impure code
then is executed in the order specified in the IO monad after all the pure computations
have been completed. Since all the pure computation is terminated before the impure
computations begin the impure computations cannot affect the pure computations and
thus, all the proofs about the correctness of the pure components remain valid.

2.3. Haskell and Referent Tracking

A language with a strong static type system such as Haskell provides means to imple-
ment computation in a way that the code compiles only if it adheres to the underlying on-
tology. The ontology underlying the RT systems studied here is the Basic Formal Ontol-
ogy (BFO) [5] extended by the notion of a state as an additional type of ‘dependent con-
tinuant’ – which is naturally represented as a function – in conjunction with the explicit
introduction of a unique identifier for every particular and every universal.

A basic requirement of the referent tracking paradigm is that identifiers are not only
unique but also immutable [4]. The explicit data flow in Haskell guarantees immutabil-
ity. Since variables are bound and cannot be changed, the initial state as well as all in-
termediate states are preserved in the system as long as only pure computation is per-
formed.

The explicit nature of the data flow of a RT system implemented in Haskell ensures
the correctness of the tracking in the following sense: the way in which the current state
of a system arises from some initial state via a finite sequence of changes, can be verified
formally. This is because the logical and ontological correctness of every possible state
change is verified at the time of compilation by the type system in conjunction with (pos-
sibly manual) inductive proofs. Thus, the current and every previous state of the system
must be logically and ontologically correct if the initial state of the system is logically
and ontologically correct. At this point it is an open question of how the provably cor-
rect state of the complete history of a RT system can be maintained through the impure
computation that is required to store and retrieve data from external media. There are
however cryptographic means (checksums, etc.) that may be suitable for guaranteeing
that states cannot be manipulated outside the pure part of the system.

3. Results

The following shows how Haskell is used to ensure that the code of the RT system com-
piles only if adheres to the underlying ontology. To understand strong type systems and
the role of types in ontology based computing in Haskell one needs to understand the
notions of concrete types, type constructors, type class declarations, type class instance
declarations and qualified types. Discussing language specific features in detail goes
beyond the scope of this paper and has been covered extensively in the literature e.g.,
[17,13,18,15,14,19]. In applied ontology those notions have been discussed extensively
in the pioneering work of Frank, Kuhn and others in Geographic Information Science,
e.g., [20,21,22].
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3.1. Ontological Categories and Unique Identifiers

At the heart of a RT systems are identifiers (UIs) which uniquely identify and re-identify
entities and thereby allowing them to be tracked over time. For convenience suppose
that all UIs are integers. To distinguish different kinds of UIs new type constants are
introduced. Following the RT paradigm the type UUI collects all the UIs for universals.
Similarly the type IUI collects all UIs for particulars. According to the RT paradigm not
only particulars and universals get assigned unique UIs but also facts about the world that
involve those entities. Consider the fact that particular x instantiates universal y at time
t. If this fact is recorded by the system then the recorded fact receives a specific UI which
is of type INST UI. Similarly for facts about other relations postulated in the underlying
top-level ontology (e.g., BFO in conjunction with the OBO relation ontology).

To specify these ideas formally a type (constant) for every kind of UI is introduced
in conjunction with the data constructors which create particular typed UIs. To keep the
notation simple the same names are used for the type and the data / value constructors.
The context will always be sufficient to disambiguate.

data UUI = UUI Int data INST_UI = INST_UI Int

data IUI = IUI Int ...

One of the fundamental properties that is shared by all UIs is that they are kinds of things
that can/need to be identified and distinguished. This is made explicit by declaring type
class instances of the Eq type class for the various UI types and telling the systems what
it means for two UUIs, IUIs, etc to be equal, e.g.,

instance Eq UUI where UUI x == UUI y = x == y

instance Eq IUI IUI x == IUI y = x == y ...

An important aspect of declaring instances of the Eq type class in this way is that expres-
sions like UUI x == IUI y will not be evaluated as False but will not even compile
because expressions that test the identity of non-comparable things are semantically not
well-formed, i.e., meaningless rather than false. This is the first example of how quali-
fied types are used to enable the type engine to reject expressions that are semantically
ill-formed according to the underlying ontology. BFO postulates a number of categories
such as Continuant, Occurrent, etc. For every BFO category an algebraic type consisting
of a pair of type and data constructors is introduced:

data CAT_Continuant a = CAT_Continuant a

data CAT_Occurrent a = CAT_Occurrent a

data CAT_I_Continuant a = CAT_I_Continuant a

data CAT_D_Continuant a = CAT_D_Continuant a

In RT systems the ontological distinction between particulars and universals needs to be
made explicit at the type level. That is, for a BFO category such as continuant there needs
to be a type for particulars that are continuants and a type for universals all of whose
instances are continuants. This is because particulars are tracked via Instance Unique
Identifiers (IUIs) and universals are tracked via Universal Unique Identifiers (UUIs). The
type variables in the declaration of the type constructors for the BFO categories will al-
low the distinction between particulars of a given category identified by IUIs and univer-
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sals all of whose instances belong to a given category and which are identified by UUIs.
The system is then capable of distinguishing at the type level UIs for continuant partic-
ulars (CAT Continuant IUI), UIs for universals all of whose instances are continu-
ant particulars (CAT Continuant UUI), UIs for occurrent particulars (CAT Occurrant

IUI), and so on for all BFO categories.
There are operations that are meaningful for all types with unary type constructors

which type parameter ranges over type class instances of UI. They are collected in the
type class CAT. An example is a function of type (UI a) => (t a) -> a that maps
types with unary type constructors to the type of the constructors type parameter.

class CAT t where getUI :: (UI a) => (t a) -> a

Type classes in this sense are like algebraic theories and can be used to specify the sig-
natures of algebraic structures such as semi-groups, Abelian groups, etc. (e.g., [22]).

Type class instants are declared for all types for which this operation is meaningful

instance CAT CAT_Continuant where getUI (CAT_Continuant a) = a

instance CAT CAT_Occurrant where getUI (CAT_ Occurrant a) = a

For all implementations of getUI one may require that the axiom (t a) = (t (getUI

(t a))) holds. This must be proven to hold for every specific type class instance dec-
laration. For finite types this can be done by a program that enumerates all possibilities.
For infinite types this must be done manually via proofs by induction. When using type
classes to specify a multiplicative group one would require that for the unit element 1
of the group the axiom x*1=1*x=x holds for all x and one would prove this for all type
class instances.

An important aspect of the BFO ontology is that the categories are partially ordered
by the isA relation. The type class SubCat collects operations that are meaningful for
formally characterizing the hierarchically ordered BFO categories as a partial order.

class (CAT s, CAT t) => SubCat s t where

subCat :: (UI a) => s a -> t a -> Bool

subCat _ _ = True

The type class declaration introduces a new constrained type s a -> t a -> Bool.
This type is constrained in three ways: firstly, whatever types are bound to the type vari-
ables s and t must also be instances of the type class CAT. Secondly, the types t and s

are type constructors rather than concrete types: they expect a type parameter to become
concrete types. The type parameter a is constrained to type class instances of the type
class UI. In addition it is required to be the type parameter of both, the type constructors
s (e.g., (s UUI)) and t (e.g., (t UUI)).

Instance declarations for the SubCat type class then tell the system for which pairs
of type constructors of the CAT type family the subCat relation is defined:

instance SubCat CAT_Continuant CAT_Entity

instance SubCat CAT_Occurrant CAT_Entity

instance SubCat CAT_Process CAT_Occurrant

To explicitly enumerate the isA hierarchy in this way may seem ineffective but remember
that this code can be generated automatically from a fully classified OWL-DL ontology.
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Given those declarations, expressions such as ‘(subCat (CAT Continuant (UUI 2))’,
‘(CAT Entity (UUI 1))’ will evaluate to True. By contrast, expressions such as ‘(subCat
(CAT Entity (UUI 1))’, ‘(CAT Continuant (UUI 2)))’, ‘(subCat (CAT Occurrent (UUI
3)) (CAT Continuant (UUI 2)))’, or ‘(subCat (CAT Continuant (IUI 2)) (CAT Entity
(UUI 1))’ will not evaluate to False but cause a type error during the ‘compilation’
phase. That is, the type system will not accept expressions that do not adhere to the
isA hierarchy of the underlying ontology. It rejects expressions that are semantically
ill-formed with respect to the underlying ontology.

Types classes which restrict type variables to particulars and universals can be de-
fined as follows. A particular is a type class which has a type constructor as its type pa-
rameter t. This parameter is restricted to types that are instances of the type class CAT. In
addition, in all functions collected in this type class the type parameter is always bound
to the type IUI, i.e., (t IUI). This expresses on the type level that every particular be-
longs to a BFO category and in addition has an IUI. The type class for universals is very
similar: every universal belongs to one BFO category and in addition has a UUI.

class (CAT t) => Particular t where

isParticular :: t IUI -> Bool

isParticular _ = True

getIUI :: (t IUI) -> IUI

getIUI = getUI

Declarations for type class instances are then required for every particular type for which
there are particulars/universals according to the underlying ontology.

instance Particular CAT_Continuant

instance Particular CAT_Occurrent

Again, it is impossible to apply the functions isParticular and getIUI to anything
that is not explicitly declared as an instance of the type class of Particular. Similarly
for the Universal type class.

3.2. Foundational Relations

Besides categories such as particulars, universals, continuants, occurrents, etc. top-level
ontologies also introduce foundational relations that relate particulars and/or universals
of the same or a different category. There is the parthood relation between particulars,
the instantiation relation between particulars and universals, the participation relation
between continuants and occurrents, and the inherence relation between dependent and
independent continuants. To study how to integrate ontological constraints that charac-
terize formal relations into a Haskell program consider the instantiation relation. The
declaration of the type of an instantiation relation consists of the type and data construc-
tors:

data InstOf t = InstOf INST_UI (t IUI) (t UUI) Time.

The type constructor InstOf has as type parameter the unary constructor function t.
Its argument is restricted to the type (t IUI) for instantiating entities and to (t UUI)

for instantiated entities. This declaration ensures that particular members of the type
(InstOf CAT Continuant) have values such as
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InstOf (INST_UI 12) (CAT_70F (IUI 16)) (CAT_70F (UUI 11)) (1)

(Time 2015 05 14 9 00 00)).

InstOf (INST_UI 12) (CAT_D_Continuant (IUI 16)) (2)

(CAT_D_Continuant (UUI 11)) (Time 2015 05 14 9 00 00)).

The type Time is assumed to be declared as something like: data Time = Time

Year Month Day Hour Min Sec, etc. Clearly, both statements are logically correct
but from an ontological perspective only the first one is well-formed. Statement (1) ex-
presses the state of affairs that the quality particular labeled (IUI 16) is an instance
of the quality universal CAT 70F (a quality determinate [23] labeled (UUI 11)) at the
given time. (CAT 70F (UUI 11)) in turn is a sub-universal of the quality universal
(CAT Temperature, (UUI 12)) which follows from a declarations of the form

instance SubCat CAT_70F CAT_Temperature

instance SubCat CAT_Temperature CAT_Quality

instance SubCat CAT_Quality CAT_D_Continuant

where the quality determinate CAT 70F is a subcategory of the quality determinable [23]
CAT Temperature. By contrast, statement (2) is ontologically ill-formed. The instanti-
ating category is too general and ought to be inferred and not be stated explicitly. That
is, by declaring a determinate quality particular (CAT 70F (IUI 16)) to be an instance
of a universal/category that is much further up in the classification hierarchy than the
associated quality determinable CAT Temperature. Statement (2) thereby violates the
principle that explicit instantiation of qualities should mirror the interrelations between
determinate and determinable quality universals [23].

At the type level it is possible to restrict the explicit instantiation of universals by
declaring a type class Instantiable of which type class instances are declared only for
universals that are leafs or near the bottom of the classification hierarchy of the underly-
ing ontology:

class (Universal t) => Instantiable t where

isInstantiable:: -> (t UUI) -> Bool

isInstantiable _ = True

instance Instantiable CAT_70F

The type constructor for the InstOf data type then could be restricted to categories for
which type class instances for the type class Instantiable exist:

data (Instantiable t) => InstOf t = InstOf INST_UI (t IUI) (t UUI) Time

If no type class instance declaration of the form instance Instantiable CAT D Con-

tinuant exists the type system will reject statement (2).

3.3. Disclaimer

The code presented above is meant to illustrate how certain language features of Haskell
support ontology based computing by enabling the type system ‘understand’ and to en-
force the commitments of an underlying formal ontology. Here we focused on Haskell’s
type class system. Space limitations prohibit the discussion of how more specific lan-

T. Bittner et al. / Ontologies of Dynamical Systems and Verifiable Ontology-Based Computation 323



guage features such as Monads can be used (a) to express ontological constraints on pos-
sible states and possible sequences of states in ways that can be enforced on the level of
types and (b) to specify impure computations.

4. Discussion

Ontologies are usually presented as axiomatic theories in first order predicate logic or a
less expressive description logic. In such a logic-based environment tasks of determining
whether certain necessary and sufficient conditions are satisfied are usually realized as
deductive proofs. Much of the success of computational ontologies is rooted in the fact
that proofs in such systems are performed automatically. But there is a trade off between
expressive power of a formal language and the computational complexity of associated
automatic proof procedures [24]: the stronger the expressive power of a formal language
the more computationally expensive are the reasoning algorithms.

4.1. Dynamic Systems, Situation Calculus and Planning in Artificial Intelligence

Logic and deduction-based methods to automated reasoning about dynamic systems has
a long history in Artificial Intelligence, e.g., [25,26,27]. Unfortunately, reasoning prob-
lems in AI tend to be highly complex due to the aim of modeling intelligent agents and
the complexity of the planning problems those agents encounter. In addition, situation
calculus and many propositional approaches to reasoning about dynamic systems are
subject to the frame problem (e.g., [28]). By contrast, the class of problems addressed
in ontology-based programming in the particular context of Referent Tracking is much
simpler because (a) RT is not a planning problem and (b) RT is highly constrained in
that it is subject to not only constraints of the physical world but also of medical rules
and guidelines, etc. Finally, describing dynamic systems in a functional language such as
Haskell seems to avoid some of the problems related to the frame problem due to (i) the
fact that functions are first order primitives (e.g., [22]), (ii) the availability of static type-
level reasoning, and (iii) the fact that general purpose deduction is replaced by formally
specified problem-specific computation.

4.2. Problems with OWL-DL

The ‘sweet-spot’ in the trade-off between the expressive power and computational ef-
ficiency of a logic-based language is widely believed to be captured in the ontology
language OWL-DL [29] in conjunction with automated theorem provers such as Racer,
Fact, Pellet, etc. [30,31,32] and associated RDF triple stores for the storage and manip-
ulation of instance data [29]. These tools support the automatic derivation of the hier-
archy of ontological categories specified in OWL-DL [29] (historically T-box reasoning
[33]) in conjunction with the manipulation of data about particulars that instantiate those
categories. Such instance data is stored in RDF triple stores [29] which can be manip-
ulated by the underlying reasoning engine (historically A-box reasoning [33]). This in-
cludes consistency checks, the computation of transitive and compositional closures of
relations, etc.

In the context of ontological computing is is natural to refer to the manipulation of
a RDF triple store using a deduction-based automatic reasoner and an OWL-DL-based
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ontology as the prototypical example of ontology-based computing as automated deduc-
tion. Within this framework every ontologically possible state and state change must be
derivable from some initial state by means of automated deduction. The advantage of this
computing paradigm is that the resulting computation is provably correct and adheres to
the underlying ontology.

The trade-off between the expressive power of a formal language and the computa-
tional efficiency of the associated formal reasoning now entails constraints on the com-
plexity of the ontology and by extension the representations of possible state and/or con-
straints on the computations that can be performed automatically by means of deduction.
The more expressive the formal language that is required to specify a formal ontology,
the less likely it is that general computation can be formulated and executed as automated
deduction in a decideable and efficently computable way. In particular ontology-based
computing as automated deduction as it is realized in current OWL-DL-based represen-
tation and reasoning systems is rather limited in the degree to which the logical prop-
erties of formal relations and the logical constraints on interrelations between them can
be specified formally and exploited in the automatic reasoning (e.g., [34]). In fact, many
current ontologies that support ontology-based computing as automated deduction, as
defined above, can specify many of the logical properties of formal relations only infor-
mally in the form of annotations (e.g., in [5]). Informally specified logical properties,
of course, cannot be incorporated in the automatic reasoning process. In particular this
means that in an OWL-DL-based framework it is difficult to rigorously and precisely
specify constrains on possible states of portions of reality and the laws that constrain pos-
sible sequences of states in conjunction with the processes through which those changes
are manifested. Although there is an active research community permanently pushing
the envelope of what can be derived in OWL-DL-like representation and reasoning sys-
tems, there remains the need for computation tasks that involve reasoning about ontolog-
ically possible states, ontologically admissible sequences of states, in conjunction with
the processes that realize those changes.

4.3. Issues with Imperative Programming Languages

Frequently, imperative programming languages ranging from C and C++ to Python and
Perl are used as implementation tools for such more complex computational tasks. Un-
fortunately, it is very difficult to formally verify such programs and to prove that the
reasoning/computation that is implemented in such programs is sound, complete, and
adheres to a specific ontology [35,10]. Despite extensive testing, programs written in im-
perative programming languages remain prone (1) to logical errors in the sense that they
perform incorrect reasoning/computations and (2) to semantic errors in the sense that
they perform reasoning/computations that does not adhere to the ontology specifying the
underlying semantics.

5. Conclusions

The goal of verifiable ontology-based computing is to use programming languages with
explicit data flow and a strong static type system to ensure that a program passes a type
checker only if it is logically and ontologically correct. First results indicate that in the
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context of referent tracking systems it is possible to achieve this goal by using the type
classes of the functional language Haskell.

However, it is important to see that verifiable ontology-based computing is not a re-
placement of OWL-DL based ontologies and computation by deduction. Both paradigms
complement each other. Our results indicate that the code whose purpose is to make the
type system of Haskell ‘understand’ the classificatory aspects of an ontology is derivable
automatically from a fully classified OWL-DL ontology. Verifiable ontology based com-
puting is about integrating ontologies into programs and ensuring that programs adhere
to an ontology. It is not about developing ontologies. However the function-based nature
of Haskell in conjunction with other higher order features indicate that ontology-based
computing in Haskell may open up possibilities to integrate into programs ontologies
that can only be expressed in full first or higher order languages.
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